Greg Freiherr, Industry Consultant

Greg Freiherr has reported on developments in radiology since 1983. He runs the consulting service, The Freiherr Group.

Blog | Greg Freiherr, Industry Consultant | Artificial Intelligence| September 08, 2017

Must Radiologists Be Prepared To Delegate ... To Smart Machines?

Last year, our health system ranked dead last among those of 11 developed nations (including France, Germany, Great Britain and Canada) in calculations done by the Commonwealth Fund, a private foundation that specializes in the analysis of healthcare. This despite seven years of expanded access to healthcare through the Affordable Care Act, also known as “Obamacare.”

No big surprise there. Obamacare — like the debate to repeal and replace it — has been more about insurance than care. To see why simply increasing the number of insured patients won’t make healthcare much better, we have to take a deep dive into the stats.

The U.S. ranks last in healthcare outcomes, according to the Fund. It has the highest rate of mortality “amenable to healthcare,” the Fund stated in a report entitled “Mirror, Mirror 2017: International Comparison Reflects Flaws and Opportunities for Better U.S. Health Care.” And the U.S. has achieved “the smallest reduction in that measure during the past decade,” according to the Fund.

So, clearly, we are not getting the job done. And it isn’t because we’re not spending enough. In 2014, the U.S. spent more than 16 percent of gross domestic product on healthcare, according to the Fund. This compares with between 8 and 12 percent for the 10 other nations in the report. And the gap separating the U.S. from other nations has progressively increased over the years and shows signs of continued widening.

 

Imaging As Catalyst

Rather than debating how to make insurance affordable, we should be looking for ways to make care more effective. A big step in that direction would be the elimination, or at least reduction, of waste. Increased efficiency and making better use of available resources tends to improve performance. Enterprise imaging can do both.

Integrating information sources has the potential to provide diagnosticians and caregivers comprehensive information about patients’ conditions, just as this integration might improve teamwork by those caregivers. Pundits have long promoted such integration.

“We need to move to integrated practice units that encompass all the skills and services,” wrote Harvard business professor Michael E. Porter in the July 9, 2009, issue of the New England Journal of Medicine, a point that Porter reiterated four years later in the Harvard Business Review. Doing so is part of a fundamentally different healthcare strategy to maximize value by delivering the best outcomes at the lowest cost, one that is organized around the needs of patients.

But enterprise imaging will not be enough. It must be part of a culture of change designed and built for efficiency and effectiveness, one that emphasizes meeting the needs of the patient. The technology underpinning this new culture is already bubbling to the surface.

Artificial intelligence (AI) has the potential to help physicians make decisions better and faster. It is already becoming a part of everyday life from smartphones to smart homes.

But before AI can play a serious role in the practice of medicine — and this is the hard part to stomach — some physicians, notably radiologists, may have to be “displaced.”

 

Displacing — Not Replacing

In a JAMA “Viewpoint” published Dec. 13, 2016, an associate professor of radiology at the Hospital of the University of Pennsylvania (HUP) and the chair of innovative medicine at the Scripps Research Institute speculated that some routine tasks performed by radiologists could be automated.

Scripps’ Eric Topol, M.D., and HUP’s Saurabh Jha, MBBS MRCS, MS, urged radiologists to identify “cognitively simple tasks” that smart machines could take over. They cited two such tasks — computed tomography (CT) screening for lung cancer and portable chest radiograms taken in the ICU to confirm the proper positioning of support lines. Delegating simple tasks to machines would allow radiologists to spend more time on challenging cases, where their expertise is most needed. This streamlining of medical practice, if widely applied, holds out the promise for improved efficiency and speedier patient care.

And the use of AI need not be restricted to high-tech imaging. Cameras built into smartphones are already being used to capture everyday events in peoples’ lives.

Might pictures sent via patient portals built into enterprise imaging help in the diagnosis of a skin lesion? Might smart machines review submitted images and select ones that warrant immediate review by physicians, thereby reducing the load placed on diagnosticians and optimizing efficiency?

Similarly, might smartphones be morphed into medical sensors — not only capturing and transmitting vital signs but ultrasound images and video? If so, AI could be leveraged to review these images, spotting cases that deserve careful study by physicians.

There are a lot of “mights” in this. And radiologists will have to go along with it. But the radiology community may soon have little choice. Healthcare costs are mounting. AI might (there’s that word again) make a difference.

It’s important to note, however, that no matter how “artificially smart” medicine becomes, healthcare costs probably will rise. Making medicine more efficient could slow expenditures, but it will probably not decrease them.

The demographics of our population will see to that. Americans are getting older. And older people need more care.

Simply put, enterprise imaging — with or without AI — is not the magic bullet for better or lower cost healthcare any more than fuel-efficient — or electric — cars are the solution to air pollution in a nation with ever more cars. But it can improve efficiency. And healthcare efficiency must be increased.

We can strive to get the most for the money we spend and to deliver the best healthcare in the world.

And those are metrics that really could matter.

 

Related Content on Artificial Intelligence in Radiology

Artificial Intelligence Could Learn From the Medical Imaging Goldmine of the NHS Archives

VIDEO: Machine Learning and the Future of Radiology

How Artificial Intelligence Will Change Medical Imaging

 

Related Content

News | Remote Viewing Systems | June 14, 2018
International Medical Solutions (IMS) recently announced that the American College of Radiology (ACR) added IMS'...
Riverain Technologies Issued U.S. Patent for Vessel Suppression Technology
News | Computed Tomography (CT) | June 14, 2018
Riverain Technologies announced that the United States Patent and Trademark Office (USPTO) has awarded the company a...
Wake Radiology Launches First Installation of EnvoyAI Platform
News | Artificial Intelligence | June 13, 2018
Artificial intelligence (AI) platform provider EnvoyAI recently completed their first successful customer installation...
American Society of Neuroradiology Honors Peter Chang with Cornelius G. Dyke Memorial Award
News | Neuro Imaging | June 13, 2018
Peter Chang, M.D., current neuroradiology fellow at UCSF and recently recruited co-director of the UCI Center for...
How AI and Deep Learning Will Enable Cancer Diagnosis Via Ultrasound

The red outline shows the manually segmented boundary of a carcinoma, while the deep learning-predicted boundaries are shown in blue, green and cyan. Copyright 2018 Kumar et al. under Creative Commons Attribution License.

News | Ultrasound Imaging | June 12, 2018 | Tony Kontzer
June 12, 2018 — Viksit Kumar didn’t know his mother had...
Zebra Medical Vision Unveils AI-Based Chest X-ray Research
News | Artificial Intelligence | June 08, 2018
June 8, 2018 — Zebra Medical Vision unveiled its Textray chest X-ray research, which will form the basis for a future
Konica Minolta Launches AeroRemote Insights for Digital Radiography
Technology | Analytics Software | June 07, 2018
Konica Minolta Healthcare Americas Inc. announced the release of AeroRemote Insights, a cloud-based, business...
Vinay Vaidya, Chief Medical Information Officer at Phoenix Children’s Hospital

Vinay Vaidya, Chief Medical Information Officer at Phoenix Children’s Hospital

Sponsored Content | Case Study | Artificial Intelligence | June 05, 2018
The power to predict a cardiac arrest, support a clinical diagnosis or nudge a provider when it is time to issue medi
How image sharing through a health information exchange benefits patients while saving time and money is depicted in this slide shown at HIMSS 2018. Graphic courtesy of Karan Mansukhani.

How image sharing through a health information exchange benefits patients while saving time and money is depicted in this slide shown at HIMSS 2018. Graphic courtesy of Karan Mansukhani.

Feature | Information Technology | June 05, 2018 | By Greg Freiherr
A regional image exchange system is saving lives and reducing radiology costs in Maryland by improving the efficiency
Using Imaging Analytics for Radiology, VCU Health in Richmond, Va., has developed a dashboard to view turnaround time analysis. This functionality allows drill down for each technologist and radiologist and looks at the different steps of the imaging cycle.

Using Imaging Analytics for Radiology, VCU Health in Richmond, Va., has developed a dashboard to view turnaround time analysis. This functionality allows drill down for each technologist and radiologist and looks at the different steps of the imaging cycle.

Sponsored Content | Case Study | Information Technology | June 05, 2018
Sharon Gibbs, director of the radiology department at VCU Health in Richmond, Va., aims to provide quality, timely and...
Overlay Init