News | Coronavirus (COVID-19) | March 06, 2020

Wuhan CT Scans Reliable for Coronavirus Diagnosis, Limited for Differentiation

Chest CTs have low rate of misdiagnosis and can standardize imaging features and transformation rules for rapid diagnosis, yet modality is limited for identification of and distinguishing between specific viruses

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus

Flowchart shows time difference between positive laboratory test results and positive CT findings for COVID-19 and adenovirus infection in the study group. Image courtesy of American Journal of Roentgenology (AJR)

March 6, 2020 — An article by radiologists from Wuhan, China — published open-access and ahead-of-print in the American Journal of Roentgenology (AJR) — concluded that chest CT had a low rate of misdiagnosis of COVID-19 (3.9 percent, 2/51) and could help standardize imaging features and rules of transformation for rapid diagnosis; however, CT remains limited for the identification of specific viruses and distinguishing between viruses.

Yan Li and Liming Xia at Tongji Hospital in Hubai Province studied the first 51 patients diagnosed with COVID-19 infection confirmed by nucleic acid testing (23 women and 28 men; age range, 26-83 years) and two patients with adenovirus (one woman and one man; ages, 58 and 66 years). In their retrospective cohort of 53 patients, as of February 9, a total of 99 chest CT examinations had been performed.

Comparing image reports of the initial CT study with laboratory test results to identify patterns suggestive of viral infection, according to Li and Xia, "COVID-19 was misdiagnosed as a common infection at the initial CT study in two patients with underlying disease and COVID-19."

Meanwhile, viral pneumonia was correctly diagnosed at the initial CT study in the remaining 49 patients with COVID-19 and two patients with adenovirus.

As Li and Xia explained: "CT of one of the two patients with confirmed adenovirus infection showed ill-defined patchy ground-glass opacities (GGOs), segmental and subpleural consolidations in both lungs, and pleural effusion. CT of the other patient showed subpleural GGOs and consolidation with vascular enlargement, interlobular septal thickening, and air bronchogram sign."

The CT findings seen in Li and Xia's two adenovirus cases were similar to those observed in their COVID-19 cases.

The two authors also found CT features of COVID-19 that differ from both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV): a reversed halo sign in two patients (3.9 percent) and pulmonary nodules with a halo sign in nine patients (17.6 percent).

"These findings are not mentioned, to our knowledge, in the studies in the literature," the authors noted.

"It is valuable for radiologists to recognize that the CT findings of COVID-19 overlap with the CT findings of diseases caused by viruses from a different family, such as adenovirus, and have differences as well as similarities with viruses within the same family, such as SARS-CoV and MERS-CoV," added Li and Xia.

For more information: www.arrs.org

Additional COVID-19 Resources for Clinicians:

World Health Organization (WHO) COVID-19 situation reports

World Health Organization (WHO) coronavirus information page

U.S. Food and Drug Administration (FDA) COVID-19 information page

Centers for Disease Control (CDC) COVID-19 information page

Related Coronavirus Content:

The Cardiac Implications of Novel Coronavirus

CT Provides Best Diagnosis for Novel Coronavirus (COVID-19)

Radiology Lessons for Coronavirus From the SARS and MERS Epidemics

Deployment of Health IT in China’s Fight Against the COVID-19 Epidemic

Emerging Technologies Proving Value in Chinese Coronavirus Fight

Radiologists Describe Coronavirus CT Imaging Features

Coronavirus Update from the FDA

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV)

Chest CT Findings of Patients Infected With Novel Coronavirus 2019-nCoV Pneumonia 

Find more related clinical content Coronavirus (COVID-19)

Related Content

Image courtesy of GE Healthcare

Feature | Mobile C-Arms | July 08, 2020 | By Melinda Taschetta-Millane
Moblie C-arms have seen several advances over the past de
 Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Investigators led by a team at Massachusetts General Hospital (MGH) now describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated functionally intact brain connections and weeks later he recovered the ability to follow commands

Getty Images

News | Coronavirus (COVID-19) | July 08, 2020
July 8, 2020 — Many patients with severe coronavirus disease 2019 (...
Fujifilm’s Sonosite SII POC ultrasound system helps to keep crowded areas clearer with a small ultrasound footprint.

Fujifilm’s Sonosite SII POC ultrasound system helps to keep crowded areas clearer with a small ultrasound footprint.

Feature | Ultrasound Imaging | July 07, 2020 | By Joan Toth
With the miniaturization of technology, improved ease of use, lower system cost, increased portability and greater ac
This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F)  #COVID19

This is Figure 2 from the article in Radiology: Acute encephalopathy. A 60 year-old-man without history of seizures presenting with convulsion. (A-B) Multifocal areas of FLAIR hyperintensity in the right cerebellum (arrows in A), left anterior cingular cortex and superior frontal gyrus (arrows in B). (C-D) Restricted diffusion in the left anterior cingulate cortex, superior frontal and middle temporal gyrus (arrows in D) and right cerebellum (arrows in E), consistent with cerebellar diaschisis. F) No hemosiderin deposits in gradient echo sequences.

Feature | Coronavirus (COVID-19) | July 06, 2020 | Dave Fornell, Editor
Four recent radiology studies, from New York, Italy, Iran and China, show how...
A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

A patient implanted with the Axonics System can undergo MRI examinations safely with radio frequency (RF) Transmit Body or Head Coil under the conditions outlined in the Axonics MRI Conditional Guidelines.

News | Magnetic Resonance Imaging (MRI) | July 02, 2020
July 2, 2020 — Axonics Modulation Technologies, Inc., a medical technology company that has developed and is commerci
This data represents wave 2 of a QuickPoLL survey conducted in partnership with an imagePRO panel created by The MarkeTech Group (TMTG), regarding the effects of COVID-19 on their business

Getty Images

Feature | Coronavirus (COVID-19) | July 01, 2020 | By Melinda Taschetta-Millane
A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...