News | April 05, 2013

UCLA Brain-Imaging Tool and Stroke Risk Test Helps Identify Cognitive Decline Early

Study demonstrates plaques and tangles may influence cognitive decline

An FDDNP brain scan of an individual with mild cognitive impairment (MCI) illustrates the parietal and frontal regions of the brain (see arrows) that have significant relationships to cognitive function. The lateral temporal lobe was another significant region, but is not included in this brain section.

April 5, 2013 — UCLA researchers have used a brain-imaging tool and stroke risk assessment to identify signs of cognitive decline early on in individuals who don't yet show symptoms of dementia.

The current small study demonstrated that not only stroke risk, but also the burden of plaques and tangles, as measured by a UCLA brain scan, may influence cognitive decline.

The imaging tool used in the study was developed at UCLA and reveals early evidence of amyloid beta (plaques) and neurofibrillary tau (tangles) in the brain — the hallmarks of Alzheimer's disease.

The study, published in the April issue of the Journal of Alzheimer's Disease, demonstrates taking both stroke risk and the burden of plaques and tangles into account may offer a more powerful assessment of factors determining how people are doing now and will do in the future.

"The findings reinforce the importance of managing stroke risk factors to prevent cognitive decline even before clinical symptoms of dementia appear," said first author David Merrill, M.D., Ph.D., an assistant clinical professor of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior at UCLA. “This is one of the first studies to examine both stroke risk and plaque and tangle levels in the brain in relation to cognitive decline before dementia has even set in.”

According to the researchers, the UCLA brain-imaging tool could prove useful in tracking cognitive decline over time and offer additional insight when used with other assessment tools.

For the study, the team assessed 75 people who were healthy or had mild cognitive impairment, a risk factor for the future development of Alzheimer's. The average age of the participants was 63.

The individuals underwent neuropsychological testing and physical assessments to calculate their stroke risk using the Framingham Stroke Risk Profile that examines age, gender, smoking status, systolic blood pressure, diabetes, atrial fibrillation (irregular heart rhythm), use of blood pressure medications and other factors.

Each participant was also injected with a chemical marker called FDDNP, which binds to deposits of amyloid beta plaques and neurofibrillary tau tangles in the brain. The researchers then used positron emission tomography (PET) to image the brains of the subjects — a method that enabled them to pinpoint where these abnormal proteins accumulate.

The study found that greater stroke risk was significantly related to lower performance in several cognitive areas, including language, attention, information-processing speed, memory, visual-spatial functioning (e.g., ability to read a map), problem-solving and verbal reasoning.

The researchers also observed that FDDNP binding levels in the brain correlated with participants' cognitive performance For example, volunteers who had greater difficulties with problem-solving and language displayed higher levels of the FDDNP marker in areas of their brain that control those cognitive activities.

"Our findings demonstrate that the effects of elevated vascular risk, along with evidence of plaques and tangles, is apparent early on, even before vascular damage has occurred or a diagnosis of dementia has been confirmed," said the study's senior author, Gary Small, M.D., director of the UCLA Longevity Center and a professor of psychiatry and biobehavioral sciences.

Researchers found that several individual factors in the stroke assessment stood out as predictors of decline in cognitive function, including age, systolic blood pressure and use of blood pressure–related medications.

Related Content

Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
Clinical Data Supports Use of Xoft System for Endometrial Cancer
News | Brachytherapy Systems | August 03, 2017
Researchers presented clinical data supporting use of the Xoft Axxent Electronic Brachytherapy (eBx) System for the...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area

NIH-funded scientists have discovered that Parkinson’s disease increases the amount of “free” water in a particular brain area. Image courtesy of David Vaillancourt, Ph.D., University of Florida.

News | Neuro Imaging | July 31, 2017
Scientists at the University of Florida have discovered a new method of observing the brain changes caused by Parkinson...
more healthcare providers and patients are choosing options such as Gamma Knife stereotactic radiosurgery
News | Radiation Therapy | July 31, 2017
Each year, up to 650,000 people who were previously diagnosed with various forms of cancer will develop brain...
"Residual Echo" of Ancient Humans May Hold Clues to Mental Disorders

MRI data shows (left) areas of the skull preferentially affected by the amount of Neanderthal-derived DNA and (right) areas of the brain’s visual system in which Neanderthal gene variants influenced cortex folding (red) and gray matter volume (yellow). Image courtesy of Michael Gregory, M.D., NIMH Section on Integrative Neuroimaging

News | Neuro Imaging | July 26, 2017
Researchers from the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of...
New York Hospital Finds Significant Cost Savings With Toshiba’s Aquilion One CT
News | Computed Tomography (CT) | July 25, 2017
In five years, Kaleida Health’s Stroke Care Center (SCC) at the Gates Vascular Institute in Buffalo, N.Y., has realized...
Overlay Init