October 10, 2007 - A new technique for capturing images of chest veins eases diagnosis of venous diseases, according to a study presented by University of Cincinnati (UC) radiologists at the North American Society of Cardiovascular Imaging's 35th Annual Meeting and Scientific Sessions in Washington, D.C.
Developed by Cristopher Meyer, M.D., and Achala Vagal, M.D., the new protocol allows radiologists to compensate for the extra time it takes contrast solution to reach the veins so useful images can be produced using the CT scanner.
“We found that the rapid-imaging scanners were almost too fast for venous studies,” explained Vagal, a UC assistant professor and radiologist at University Hospital. “By the time the contrast reached the patient’s veins, there were too many artifacts to make any meaningful conclusions about possible disease - for example, blood clots.”
Venous disease is rare and can be difficult to pinpoint, noted Vagal. “This new protocol uses the same imaging equipment in a novel way that allows us to acquire better venous images and make good clinical decisions,” said Vagal, who presented guidelines for this thoracic imaging protocol at the meeting.
For this new imaging technique, the CT technologist prepares two syringes of contrast: The first includes 140 cubic centimeters (CC) of undiluted contrast; the second contains a diluted mixture of 100 CC of contrast and 10 CC of saline solution.
"The key to getting accurate clinical images of the veins is in the timing," Vagal indicated.
Both syringes are given consecutively at a rate of four CC per second, with a 60-second delay between the final injection and initiation of the CT scan.
"Previously, there was so much dense contrast in the veins that all you could see on the CT scan were streaks that didn't tell you anything about possible venous disease," explained Vagal. "Delaying the scan gave us enough time for both the arteries and the veins to be opacified, which resulted in the crisp images that allowed us to make better clinical determinations."

For more information: www.med.uc.edu


Related Content

News | FDA

Nov. 26, 2025 — a2z Radiology AI has received U.S. FDA clearance for a2z-Unified-Triage, a single device that flags and ...

Time December 03, 2025
arrow
News | RSNA 2025

Nov. 13, 2025 — Nano-X Imaging Ltd., a medical imaging technology company, will showcase its Nanox.ARC X multi-source ...

Time November 25, 2025
arrow
News | Interventional Radiology

Nov. 12, 2025 — On Nov. 11, Huntsman Cancer Institute at the University of Utah (the U) opened its first specialized ...

Time November 13, 2025
arrow
Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | Radiology Imaging | UC San Diego Health

Oct. 16, 2025 — A strategic collaboration between UC San Diego Health and GE HealthCare will focus on bringing advanced ...

Time October 20, 2025
arrow
News | Mammography

Sept. 3, 2025 — According to ARRS’ American Journal of Roentgenology (AJR), a commercial artificial intelligence (AI) ...

Time September 09, 2025
arrow
News | Lung Imaging

Aug. 26, 2025 — Optellum, a global leader in AI for lung health, recently announced the world’s first thorax CT ...

Time August 26, 2025
arrow
News | RSNA 2025

Aug. 13, 2025 — Registration is now open for the RSNA 111th Scientific Assembly and Annual Meeting, the world’s leading ...

Time August 13, 2025
arrow
News | Artificial Intelligence

July 22, 2025 — GE HealthCare has topped a U.S. Food and Drug Administration (FDA) list of AI-enabled medical device ...

Time July 23, 2025
arrow
News | Breast Imaging

QT Imaging Holdings, Inc. has announced the launch of its latest QTviewer, version 2.8. QTviewer stores and displays the ...

Time July 21, 2025
arrow
Subscribe Now