News | June 12, 2009

Study Shows New Contrast Agent May Identify Vulnerable Plaque

3D rabbit heart spiral CT images enhanced using the N1177 contrast agent.

June 12, 2009 - NanoScan Imaging LLC today announced the publication of new data demonstrating the use of its investigational, radio-opaque contrast agent (N1177) to visualize vulnerable plaques that can cause heart attack or stroke using advanced, noninvasive and high-resolution computed tomography (CT) techniques.

Results of the study were published in the current issue of the Journal of Nuclear Medicine (June 2009, pages 959-965).

N1177, an emulsified suspension that is composed of crystalline iodinated particles dispersed with surfactant, is being developed to visualize blood vessels and organs of the body, with particular interest in the arteries, veins and the heart chambers using a technique known as CT angiography (CTA). N1177 also accumulates in macrophage cells allowing for their detection with CT.

Macrophages are the predominant cells involved in creating the progressive plaque lesions of atherosclerosis, a progressive disease and the main cause of cardiovascular disease - the number one killer worldwide. Atherosclerosis is caused by the build-up of plaques (fatty or fibrous deposits) in the artery walls. This can result in the narrowing of the arteries, which can reduce the supply of blood to vital organs such as the heart and brain. Plaques can also rupture, leading to a sudden, complete blockage of blood flow. Plaques that are at high-risk or “vulnerable” to rupture are characterized by strong macrophage infiltration, which result in acute plaque destabilization and thrombus formation.

In the study, researchers from the Mount Sinai School of Medicine investigated whether or not N1177 correlated with macrophage activity evaluated with 18fluorine-fluorodeoxyglucose (FDG) on PET/CT and also macrophage density on histology. After only two hours, the enhancement of the macrophage rich plaque after the injection of N1177 was significantly higher and specific inside of the vessel wall in rabbits fed a high cholesterol diet compared to control rabbits fed a normal chow diet (p

Several noninvasive imaging techniques have been investigated for macrophage detection in atherosclerotic plaques. For example, ultrasmall superparamagnetic particles of iron oxide (USPIO) are taken up by macrophages that can be detected as signal voids using magnetic resonance imaging (MRI) or combined with a radiotracer to quantify the accumulation of these particles using PET. However, high spatial and temporal imaging resolutions required for imaging the arterial wall of coronary arteries are currently achievable neither with PET nor with MRI. In addition, the optimal imaging time after the injection of iron oxide nanoparticles may be up to 72 hours, limiting the practical use of this technique as a screening tool.

By comparison, CT offers to detect macrophage-rich lesions as early as two hours after the intravenous injection of N1177 with a spatial resolution allowing for the evaluation of coronary atherosclerotic plaques. Quantification of N1177 accumulation in atherosclerotic plaques is facilitated by the linear relationship existing between iodine concentration in tissue and signal increase measured with CT. In addition, detection of macrophages with N1177 could be used in connection with other CT markers identified in ruptured plaques such as areas of low densities, positive remodeling and absence of calcifications to enhance the potential of CT to identify high-risk plaques.

N1177 is cleared through the liver unlike traditional contrast agents that are cleared through the kidneys, which can result in renal toxicity.

For more information: www.nanoscanimaging.com

Related Content

RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Guerbet Showcases Diagnostic and Interventional Imaging Solutions at RSNA 2018
News | Interventional Radiology | December 12, 2018
Guerbet LLC USA highlighted new and next-level product offerings and partnerships in contrast media, injectors,...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Hitachi Medical Systems Europe Introduces Third-Generation Intelligent Vector Flow Mapping
News | Cardiovascular Ultrasound | December 07, 2018
Hitachi Medical Systems Europe introduced what it calls the next level of intelligent Vector Flow Mapping (iVFM) at...
Spectrum Dynamics Sues GE for Theft, Misappropriation of Trade Secrets and Unfair Competition
News | SPECT Imaging | December 06, 2018
Single-photon emission computed tomography (SPECT) cardiac imaging company Spectrum Dynamics filed a lawsuit Dec. 6,...
Guerbet Launches Multi-Use OptiVantage Contrast Media Injector in Europe
Technology | Contrast Media Injectors | December 05, 2018
Contrast agent company Guerbet recently announced that the OptiVantage multi-use contrast media injector is now CE...
VigiLanz and Cincinnati Children's Commercialize Real-Time Acute Kidney Injury Tracking
News | Contrast Media | November 30, 2018
VigiLanz and Cincinnati Children’s Hospital Medical Center recently announced a collaboration that leverages Cincinnati...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
AI Promising in Predicting Chronic Conditions From CT Scans
News | Artificial Intelligence | November 27, 2018
Zebra Medical Vision and Clalit Health Services announced the completion of two research projects that allow early...
Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

News | Contrast Media | November 27, 2018
Researchers are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in...