News | Radiation Dose Management | May 12, 2017

Study Reveals Low Adoption of IAEA Recommendations for Reduced Nuclear Cardiology Radiation Exposure

Majority of sites worldwide found to be using less than half of the suggested quality metrics to achieve dose of 9 mSv or less

Study Reveals Low Adoption of IAEA Recommendations for Reduced Nuclear Cardiology Radiation Exposure

May 12, 2017 — A study in 65 countries has revealed low adoption of International Atomic Energy Agency (IAEA) recommendations to reduce nuclear cardiology radiation exposure. The research was presented at ICNC 2017, May 7-9 in Vienna Austria, by Edward Hulten, M.D., a cardiologist at the Walter Reed National Military Medical Center, Bethesda, Md.

Nuclear cardiology uses small amounts of radioactive tracers that are injected into the veins and taken up by the heart. A gamma camera images the radiation from the tracer. The cardiac images are used to measure the heart size and function, identify coronary heart disease and predict the risk of a heart attack.

Hulten said, “Nuclear cardiology is a key part of contemporary cardiology management and around 15 to 20 million procedures are performed annually. It gives information regarding diagnosis, prognosis, and the effects of therapeutic interventions.”

“Concerns have been raised about tests, including nuclear cardiology, that expose patients to ionizing medical radiation,” he continued. “Medical radiation potentially raises the lifetime risk of cancer which is important for all patients, especially younger patients or when considering additional radiation over time from further medical studies.”

A goal of 9 mSv or less radiation exposure per scan was recommended by the American Society of Nuclear Cardiology (ASNC) in 2010. It was noted in a 2016 International Atomic Energy Agency (IAEA) nuclear cardiology guideline but not formally endorsed as a recommendation.

The IAEA developed eight quality metrics for responsible radiation use in nuclear cardiology:

  • Avoiding thallium 201 stress testing;
  • Avoiding dual isotope testing;
  • Avoiding too much technetium-99m and thallium 201;
  • Using stress-only imaging;
  • Use of camera technologies to reduce dose;
  • Use of weight-based dosing strategies for technetium-99m; and
  • Avoiding inappropriate dosing that can lead to “shine-through” artifacts.

The IAEA Nuclear Cardiology Protocols Study (INCAPS) assessed adherence to the eight quality metrics. The present analysis investigated which metrics were most helpful in meeting the ASNC’s 9 mSv target. During one week in 2013, 308 nuclear cardiology laboratories were studied in 65 countries in Africa, Asia, Europe, Latin America, North America and Oceania.

The survey included 7,911 nuclear cardiology scans. There was significant variability in adherence to the quality metrics across laboratories and regions. There was low adherence overall, with the majority of sites implementing less than half of the quality metrics.

When the researchers performed multivariable logistic regression analysis, they found that the practices most strongly associated with achieving a 9 mSv or less scan were the use of stress or rest only imaging, avoiding thallium, and use of camera technologies to reduce radiation dose.

Hulten said, “When the 9 mSv recommendation was made in 2010 it was suggested that it should be achieved in 50 percent of scans by 2014. The INCAPS survey shows that there is still work to do. It is possible to reduce radiation exposure with existing techniques. Cadmium zinc telluride (CZT) cameras are more sensitive and allow for reduced dose scanning. With certain tracers you can achieve 1 mSv or less. But some scans use more than 30 mSv, so there is huge variability.”

Not every site has all of the hardware and technology, said Hulten, so the first step is to look at what is possible within each lab. He said, “There are improvements every lab can make regardless of money – for example multiple position imaging, weight-based dosing and stress-only techniques. They do require adapting existing workflows which takes leadership but they should be feasible in most labs.”

He added, “Eventually cameras wear out and perhaps the decision on a replacement could factor in a reduced radiation dose which also lowers false positive tests and has the potential to reduce lab costs.”

Hulten concluded, “The INCAPS survey is a crucial step towards improving patient care in the field of nuclear cardiology by quantifying worldwide adherence to best practices. Any test involving ionising radiation will increase cancers within a population but the risk must be weighed against the benefit of gaining information about heart disease. The 9 mSv goal is achievable, and the lower the better.”

For more information: www.escardio.org

Related Content

Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
X-ray of a knee replacement. CMS may change reimbursements for joint and knee replacements. Patient Marilyn Fornell.

CMS may change how it reimburses for knee replacements and said it may eliminate bundled payments for acute cardiac care.

Feature | Business | August 16, 2017 | Dave Fornell
August 16, 2017 — The Centers for Medicare and Medicaid Services (CMS) announced a proposed rule to reduce the number
CMS considers eliminating or changing bundled payments for orthopedic and knee replacement imaging. Photo by Vital Images

CMS is considering elimination or changing bundled payments for knee replacements. 

News | August 14, 2017 | Dave Fornell
...
CDN to Integrate Advanced Cardiac Imaging Tools From DiA Imaging Analysis
Technology | Advanced Visualization | August 10, 2017
August 10, 2017 — CDN recently announced a new partnership agreement with DiA Imaging Analysis Ltd., makers of next-g
Four Blue Cross Blue Shield Companies Issue Positive Medical Policies on HeartFlow FFRct Analysis
News | Computed Tomography (CT) | August 09, 2017
HeartFlow Inc. announced that four Blue Cross Blue Shield companies have each issued a positive medical policy for the...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
Virtual Phantoms Inc. Releases VirtualDose-IR
Technology | Radiation Dose Management | August 07, 2017
Virtual Phantoms Inc. announced the release of VirtualDoseIR, a tool for assessing organ dose from interventional...
Clinical Data Supports Use of Xoft System for Endometrial Cancer
News | Brachytherapy Systems | August 03, 2017
Researchers presented clinical data supporting use of the Xoft Axxent Electronic Brachytherapy (eBx) System for the...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
Overlay Init