News | April 30, 2015

Study Proves Efficacy of Second-Generation Prostate Imaging Biomarker

PET agent provides higher-quality images from first generation at half the dose

prostate cancer, [18F]DCFPyL, PSMA, biomarker, Johns Hopkins, WMIS

April 30, 2015 — A first-in-human prostate cancer study in the Journal of Molecular Imaging and Biology showed initial safety, biodistribution and dosimetry results with [18F]DCFPyL, a second-generation fluorine-18 labeled small-molecule prostate-specific membrane antigen (PSMA) inhibitor. The imaging biomarker has been developed at Johns Hopkins University in Baltimore by study co-author Martin G. Pomper, M.D., Ph.D.

“This initial human evaluation of [18F]DCFPyL demonstrated a number of important findings. The radiotracer was safe, and parallels the expected uptake with significantly improved visual conspicuity of suspected sites of metastatic prostate cancer in comparison to our first generation radiotracer,” said Pomper, William R. Brody Professor of Radiology at Johns Hopkins.

[18F]DCFPyL is a second-generation small-molecule positron emission tomography (PET) agent that attaches to the PSMA. Signals from [18F]DCFPyL can then be measured via a PET scan. The study demonstrated that [18F]DCFPyL produced images that showed lower blood pool activity, providing clearer images than the first-generation agent, [18F]DCFBC, produced by the same group. The study also showed 50 percent lower radiation dose in the most sensitive organs.

According to the American Cancer Society, about 220,800 new cases and 27,540 deaths will occur from prostate cancer in the United States in 2015. While prostate cancer is often curable, there remain a large number of patients with residual, recurrent and metastatic disease who need imaging for lesion detection, therapeutic monitoring and restaging. Conventional imaging has not proven to be sufficiently sensitive and specific for detection of prostate cancer lesions.

“The basis of more accurate, molecularly-informed classification of disease is the premise of precision medicine and specific molecular imaging biomarkers are the keys to determine how we classify diseases, how we select therapy, how we monitor therapy, and ultimately how we make treatments more accurate for each individual for better patient outcomes,” said Jason Lewis, M.D,. Ph.D., professor and vice chair for research, Emily Tow Jackson Chair at Memorial Sloan-Kettering Cancer Center, and president of the World Molecular Imaging Society (WMIS). “We commend the team at Johns Hopkins for developing a more sensitive and accurate PSMA.”

For more information: www.wmis.org

Related Content

New Study Evaluates Head CT Examinations and Patient Complexity
News | Neuro Imaging | May 17, 2019
Computed tomography (CT) of the head uses special X-ray equipment to help assess head injuries, dizziness and other...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
Icon Launches New Clinical Trial Patient Engagement Platform
Technology | Patient Engagement | May 14, 2019
Icon plc announced the release of its web-based clinical trial patient engagement platform, to provide patients with...
Blue Earth Diagnostics Expands Access to Axumin in Europe
News | Radiopharmaceuticals and Tracers | May 13, 2019
Blue Earth Diagnostics announced expanded access to the Axumin (fluciclovine (18F)) imaging agent in Europe. The first...
Radiotherapy After Chemo May Improve Survival in Advanced Hodgkin's Lymphoma Patients
News | Radiation Therapy | May 10, 2019
Patients with advanced Hodgkin's lymphoma who have large tumors at the time of diagnosis may benefit from radiotherapy...
Shine Medical Technologies Breaks Ground on U.S. Medical Isotope Production Facility

Image courtesy of Amen Clinics

News | Radiopharmaceuticals and Tracers | May 10, 2019 | Jeff Zagoudis, Associate Editor
Shine Medical Technologies Inc. broke ground on their first medical isotope production facility in Janesville, Wis. U.S...
Screening MRI Detects BI-RADS 3 Breast Cancer in High-risk Patients
News | MRI Breast | May 09, 2019
When appropriate, short-interval follow-up magnetic resonance imaging (MRI) can be used to identify early-stage breast...
Ultrasonic Device Safe and Effective for Lung Vessel Sealing in Minimally Invasive Lobectomy
News | Interventional Radiology | May 06, 2019
According to a new study, an ultrasonic vessel-sealing device can improve patient outcomes by reducing the incidence of...
Pencil Beam Scanning Better Protects Children With Brain Tumors
News | Proton Therapy | May 01, 2019
A comparison of three types of radiotherapy for children's brain tumors suggests a type of proton therapy called pencil...