News | Radiology Imaging | July 14, 2015

Study Identifies Brain Abnormalities in People with Schizophrenia

MRI scans discover variation of volume in certain brain areas in schizophrenic patients

brain abnormalities, schizophrenia, MRI, ENIGMA, Jessica Turner, Theo van Erp

July 14, 2015 - Structural brain abnormalities in patients with schizophrenia have been identified in an internationally collaborative study led by a Georgia State University scientist. Study results are providing insight into how the condition may develop and respond to treatment.

Scientists at more than a dozen locations across the United States and Europe analyzed brain magnetic resonance imaging (MRI) scans from 2,028 schizophrenia patients and 2,540 healthy controls, assessed with standardized methods at 15 centers worldwide. The findings, published in Molecular Psychiatry, help further the understanding of the mental disorder.

The work was the outcome of the Enhancing Neuroimaging Genetics through Meta-Analysis project (ENIGMA), from the Schizophrenia Working Group that is co-chaired by Jessica Turner, associate professor of psychology and neuroscience at Georgia State, and Theo van Erp, assistant research professor in psychiatry at the University of California, Irvine.

"This is the largest structural brain meta-analysis to date in schizophrenia, and specifically, it is not a meta-analysis pulled only from the literature," said Turner. "Investigators dug into their desk drawers, including unpublished data to participate in these analyses. Everyone performed the same analyses using the same statistical models, and we combined the results. We then identified brain regions that differentiated patients from controls and ranked them according to their effect sizes."

The team found individuals with schizophrenia have smaller volume in the hippocampus, amygdala, thalamus, nucleus accumbens and intracranial space than controls, and larger pallidum and ventricle volumes. The study validates collaborative data analyses can be used across brain phenotypes and disorders, and encourages analysis and data-sharing efforts to further understanding of severe mental illness.

The ENIGMA collaborations include working groups for other disorders such as bipolar disorder, attention deficit, major depression, autism and addictions, who are all doing these same analyses.

The next step in this research is to compare the effects across disorders, to identify which brain region is the most affected in which disorder, and to determine the effects of age, medication, environment and symptom profiles across these disorders.

"There's the increased possibility, not just because of the massive datasets, but also because of the collaborative brain power being applied here from around the world, that we will find something real and reliable that will change how we think about these disorders and what we can do about them," Turner said.

For more information: www.enigma.ini.usc.edu

Related Content

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy.

Henry Ford Hospital's ViewRay MRIdian linear accelerator system allows real-time MRI-guided radiotherapy.

Feature | Henry Ford Hospital | May 21, 2019 | Dave Fornell, Editor
Henry Ford Hospital thought leaders regularly speak at the radiation oncology and radiology conferences about new res
MaxQ AI Launches Accipio Ax Slice-Level Intracranial Hemorrhage Detection
Technology | Computer-Aided Detection Software | May 21, 2019
Medical diagnostic artificial intelligence (AI) company MaxQ AI announced that Accipio Ax will begin shipping in August...
Videos | Radiation Therapy | May 21, 2019
This is a walk through of the ViewRay MRIdian MRI-guided radiotherapy system installed at ...
Partial Breast Irradiation Effective, Convenient Treatment Option for Low-Risk Breast Cancer
News | Radiation Therapy | May 20, 2019
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast...
AI Detects Unsuspected Lung Cancer in Radiology Reports, Augments Clinical Follow-up
News | Artificial Intelligence | May 20, 2019
Digital Reasoning announced results from its automated radiology report analytics research. In a series of experiments...
360 Photos | Magnetic Resonance Imaging (MRI) | May 17, 2019
This is a dedicated cardiac Siemens 1.5T MRI system installed at the Baylor Scott White Heart Hospital in Dallas.
New Study Evaluates Head CT Examinations and Patient Complexity
News | Neuro Imaging | May 17, 2019
Computed tomography (CT) of the head uses special X-ray equipment to help assess head injuries, dizziness and other...
Miami Cardiac and Vascular Institute Implements Philips Ingenia Ambition X 1.5T MRI
News | Magnetic Resonance Imaging (MRI) | May 17, 2019
Miami Cardiac & Vascular Institute announced the implementation of Philips’ Ingenia Ambition X 1.5T MR, the world’s...
Brain images that have been pre-reviewed by the Viz.AI artificial intelligence software to identify a stroke. The software automatically sends and alert to the attending physician's smartphone with links to the imaging for a final human assessment to help speed the time to diagnosis and treatment. Depending on the type of stroke, quick action is needed to either activate the neuro-interventional lab or to administer tPA. Photo by Dave Fornell.

Brain images that have been pre-reviewed by the Viz.AI artificial intelligence software to identify a stroke. The software automatically sends and alert to the attending physician's smartphone with links to the imaging for a final human assessment to help speed the time to diagnosis and treatment. Depending on the type of stroke, quick action is needed to either activate the neuro-interventional lab or to administer tPA. Photo by Dave Fornell.

Feature | Artificial Intelligence | May 17, 2019 | Inga Shugalo
With its increasing role in medical imaging,...