News | Contrast Media | January 11, 2018

Study Finds No Evidence that Gadolinium Causes Neurologic Harm

New study finds no evidence that gadolinium, an ingredient in contrast media, will harm the brain

Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive decline, according to a new study presented at the annual meeting of the Radiological Society of North America (RSNA), Nov. 26-Dec. 1 in Chicago.

Gadolinium-based contrast media were introduced in 1988 as a means of enhancing magnetic resonance imaging (MRI) and are commonly used today. The contrast agent is injected into the patient's bloodstream and eliminated from the body through the kidneys.

"It's estimated that approximately 400 million doses of gadolinium have been administered since 1988," said the study's lead author, Robert J. McDonald, M.D., Ph.D., neuroradiologist at the Mayo Clinic in Rochester, Minn. "Gadolinium contrast material is used in 40 to 50 percent of MRI scans performed today."

Scientists previously believed gadolinium contrast material could not cross the blood-brain barrier, the semipermeable membrane that selectively filters materials from the bloodstream from entering extracellular fluid in the brain and central nervous system. However, recent studies, including one from McDonald and colleagues, found that traces of gadolinium could be retained in the brain for years after MRI.

On Sept. 8, 2017, the U.S. Food and Drug Administration (FDA) recommended adding a warning to labels about gadolinium retention in various organs, including the brain, for gadolinium-based contrast agents used during MRI. The FDA highlighted several specific patient populations at greater risk, including children and pregnant women.

Still, very little is known about the health effects, if any, of gadolinium that is retained in the brain.

For this study, McDonald and colleagues set out to identify the neurotoxic potential of intracranial gadolinium deposition following intravenous administration of gadolinium-based contrast agents during MRI.

The researchers used the Mayo Clinic Study of Aging (MCSA), the world's largest prospective population-based cohort on aging, to study the effects of gadolinium exposure on neurologic and neurocognitive function.

All MCSA participants underwent extensive neurologic evaluation and neuropsychological testing at baseline and 15-month follow-up intervals. Neurologic and neurocognitive scores were compared using standard methods between MCSA patients with no history of prior gadolinium exposure and those who underwent prior MRI with gadolinium-based contrast agents. Progression from normal cognitive status to mild cognitive impairment and dementia was assessed using multistate Markov model analysis.

The study included 4,261 cognitively normal men and women, between the ages of 50 and 90 with a mean age of 72. Mean length of study participation was 3.7 years. Of the 4,261 participants, 1,092 (25.6 percent) had received one or more doses of gadolinium-based contrast agents, with at least one participant receiving as many as 28 prior doses. Median time since first gadolinium exposure was 5.6 years.

After adjusting for age, sex, education level, baseline neurocognitive performance and other factors, gadolinium exposure was not a significant predictor of cognitive decline, dementia, diminished neuropsychological performance or diminished motor performance. No dose-related effects were observed among these metrics. Gadolinium exposure was not an independent risk factor in the rate of cognitive decline from normal cognitive status to dementia in this study group.

"Right now there is concern over the safety of gadolinium-based contrast agents, particularly relating to gadolinium retention in the brain and other tissues," McDonald said. "This study provides useful data that at the reasonable doses 95 percent of the population is likely to receive in their lifetime, there is no evidence at this point that gadolinium retention in the brain is associated with adverse clinical outcomes."

Co-authors are Jennifer S. McDonald, Ph.D., Terry Therneau, Ph.D., Laurence J. Eckel, M.D., David F. Kallmes, M.D., Rickey Carter, Ph.D., Clifford R. Jack Jr., M.D., and Ronald C. Petersen, M.D., Ph.D.

This paper is the winner of the Kuo York Chynn Neuroradiology Research Award.

For more information: www.rsna.org

Related Content

Key RSNA 2017 Study Presentations, Trends and Video

VIDEO: Big Concerns Remain for MRI Gadolinium Contrast Safety at RSNA 2017

VIDEO: How Serious is MRI Gadolinium Retention in the Brain and Body?

FDA Committee Votes to Expand Warning Labels on Gadolinium-Based Contrast Agents

Related Content

FDA Clears Advancements for Viewray MRIdian Radiation Therapy System
Technology | Image Guided Radiation Therapy (IGRT) | February 21, 2019
February 21, 2019 — ViewRay Inc. received 510(k) clearance from the U.S.
MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Videos | Radiation Therapy | February 15, 2019
ITN Associate Editor Jeff Zagoudis speaks with Vinai Gondi, M.D., director of research and CNS neuro-oncology at the
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e
Videos | Angiography | February 08, 2019
This is an example of an arterial venous malformation (AVM) in the brain imaged on a...
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
Medtronic Recalls Synergy Cranial Software and Stealth Station S7 Cranial Software
News | Procedure Navigation Systems | February 05, 2019
Medtronic is recalling the Synergy Cranial Software and StealthStation S7 Cranial Software used with the StealthStation...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...
Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers
News | Stereotactic Body Radiation Therapy (SBRT) | January 31, 2019
The first report from a phase II, multi-center clinical trial indicates stereotactic radiation can extend long-term...