News | Computed Tomography (CT) | October 20, 2020

Rensselaer, First-Imaging, and GE Global researchers develop a deep neural network to perform nearly as well as more complex dual-energy CT imaging technology

Rensselaer, First-Imaging, and GE Global researchers develop a deep neural network to perform nearly as well as more complex dual-energy CT imaging technology

October 20, 2020 — Bioimaging technologies are the eyes that allow doctors to see inside the body in order to diagnose, treat, and monitor disease. Ge Wang, an endowed professor of biomedical engineering at Rensselaer Polytechnic Institute, has received significant recognition for devoting his research to coupling those imaging technologies with artificial intelligence in order to improve physicians' "vision."

In research published in Patterns, a team of engineers led by Wang demonstrated how a deep learning algorithm can be applied to a conventional computerized tomography (CT) scan in order to produce images that would typically require a higher level of imaging technology known as dual-energy CT.

Wenxiang Cong, a research scientist at Rensselaer, is first author on this paper. Wang and Cong were also joined by coauthors from Shanghai First-Imaging Tech, and researchers from GE Research.

"We hope that this technique will help extract more information from a regular single-spectrum X-ray CT scan, make it more quantitative, and improve diagnosis," said Wang, who is also the director of the Biomedical Imaging Center within the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer.

Conventional CT scans produce images that show the shape of tissues within the body, but they don't give doctors sufficient information about the composition of those tissues. Even with iodine and other contrast agents, which are used to help doctors differentiate between soft tissue and vasculature, it's hard to distinguish between subtle structures.

A higher-level technology called dual-energy CT gathers two datasets in order to produce images that reveal both tissue shape and information about tissue composition. However, this imaging approach often requires a higher dose of radiation and is more expensive due to needed additional hardware.

"With traditional CT, you take a grayscale image, but with dual-energy CT you take an image with two colors," Wang said. "With deep learning, we try to use the standard machine to do the job of dual-energy CT imaging."

In this research, Wang and his team demonstrated how their neural network was able to produce those more complex images using single-spectrum CT data. The researchers used images produced by dual-energy CT to train their model and found that it was able to produce high-quality approximations with a relative error of less than 2%.

"Professor Wang and his team's expertise in bioimaging is giving physicians and surgeons 'new eyes' in diagnosing and treating disease," said Deepak Vashishth, director of CBIS. "This research effort is a prime example of the partnership needed to personalize and solve persistent human health challenges."

For more information: www.rpi.edu


Related Content

Feature | Teleradiology | Kyle Hardner

Once viewed as a solution for after-hours coverage, teleradiology is rapidly expanding into a critical part of radiology ...

Time November 06, 2025
arrow
News | RSNA 2025

Nov. 4, 2025 — Altamont Software, a provider of enterprise medical connectivity solutions, has announced the ...

Time November 05, 2025
arrow
News | X-Ray

Oct. 30, 2025 – In collaboration with OBIO, University Health Network (UHN), Canada’s leading hospital and the No. 1 ...

Time November 03, 2025
arrow
News | Magnetic Resonance Imaging (MRI) | Children's Hospital Los Angeles

Oct. 28, 2025 — Bronchopulmonary dysplasia (BPD) is the most common — and most serious — complication of extreme ...

Time October 31, 2025
arrow
News | FDA

Oct. 30, 2025 — Sirona Medical has received U.S. Food and Drug Administration (FDA) 510(k) clearance for its Sirona ...

Time October 30, 2025
arrow
Feature | Archive Cloud Storage | Shujah Dasgupta, Vice President, CitiusTech

Almost two-thirds of health systems are already using (or plan to use) the cloud for storing and viewing medical images ...

Time October 30, 2025
arrow
News | Cardiac Imaging

Oct., 2025 — Elucid, an AI medical technology company focused on providing physicians with a more precise view of ...

Time October 29, 2025
arrow
News | Radiology Business | Harvey L. Neiman Health Policy Institute

Oct. 27, 2025 — A new study from the Harvey L. Neiman Health Policy Institute found that radiologists who experienced ...

Time October 28, 2025
arrow
Feature | Breast Imaging

Despite decades of progress in breast imaging, one challenge continues to test even the most skilled radiologists ...

Time October 24, 2025
arrow
News | Endoscopes

Oct. 22, 2025 — Fujifilm Healthcare Americas Corp. has launched its advanced endoscopy platform, the ELUXEO 8000 ...

Time October 23, 2025
arrow
Subscribe Now