News | Computed Tomography (CT) | October 20, 2020

Standard CT Technology Produces Spectral Images with Deep Learning Algorithms

Rensselaer, First-Imaging, and GE Global researchers develop a deep neural network to perform nearly as well as more complex dual-energy CT imaging technology

Rensselaer, First-Imaging, and GE Global researchers develop a deep neural network to perform nearly as well as more complex dual-energy CT imaging technology

October 20, 2020 — Bioimaging technologies are the eyes that allow doctors to see inside the body in order to diagnose, treat, and monitor disease. Ge Wang, an endowed professor of biomedical engineering at Rensselaer Polytechnic Institute, has received significant recognition for devoting his research to coupling those imaging technologies with artificial intelligence in order to improve physicians' "vision."

In research published in Patterns, a team of engineers led by Wang demonstrated how a deep learning algorithm can be applied to a conventional computerized tomography (CT) scan in order to produce images that would typically require a higher level of imaging technology known as dual-energy CT.

Wenxiang Cong, a research scientist at Rensselaer, is first author on this paper. Wang and Cong were also joined by coauthors from Shanghai First-Imaging Tech, and researchers from GE Research.

"We hope that this technique will help extract more information from a regular single-spectrum X-ray CT scan, make it more quantitative, and improve diagnosis," said Wang, who is also the director of the Biomedical Imaging Center within the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer.

Conventional CT scans produce images that show the shape of tissues within the body, but they don't give doctors sufficient information about the composition of those tissues. Even with iodine and other contrast agents, which are used to help doctors differentiate between soft tissue and vasculature, it's hard to distinguish between subtle structures.

A higher-level technology called dual-energy CT gathers two datasets in order to produce images that reveal both tissue shape and information about tissue composition. However, this imaging approach often requires a higher dose of radiation and is more expensive due to needed additional hardware.

"With traditional CT, you take a grayscale image, but with dual-energy CT you take an image with two colors," Wang said. "With deep learning, we try to use the standard machine to do the job of dual-energy CT imaging."

In this research, Wang and his team demonstrated how their neural network was able to produce those more complex images using single-spectrum CT data. The researchers used images produced by dual-energy CT to train their model and found that it was able to produce high-quality approximations with a relative error of less than 2%.

"Professor Wang and his team's expertise in bioimaging is giving physicians and surgeons 'new eyes' in diagnosing and treating disease," said Deepak Vashishth, director of CBIS. "This research effort is a prime example of the partnership needed to personalize and solve persistent human health challenges."

For more information: www.rpi.edu

Related Content

Guerbet announced the launch of OptiProtect 3S, a new range of technical services for its injection solutions. OptiProtect 3S is designed to support imaging centers in the daily use and protection of their injection solutions.
News | Contrast Media Injectors | February 25, 2021
February 25, 2021 — Guerbet announced the launch of ...
Advanced technologies and applications such as point-of-care, pediatrics, dry-magnets, compact MRI and fusion imaging are driving global market
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Frost & Sullivan's recent analysis, Technological Advancements and Emerging Applications in t
55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned. #COVIDvaccine #COVID19

55-year-old woman who underwent screening mammogram and ultrasound 7 days after first COVID-19 vaccination dose. Screening mammogram and US demonstrated unilateral left axillary lymph node with cortical thickness of 5 mm on ultrasound (not shown). BI-RADS category 0 was assigned. Ultrasound from diagnostic work-up performed 7 days later showed no change in lymph node size. BI-RADS 3 was assigned.

News | Breast Imaging | February 24, 2021
Detroit-based magnetic resonance imaging (MRI) technology company SpinTech, Inc. has acquired medical-imaging research and technology developer Magnetic Resonance Innovations, Inc. (MR Innovations).
News | Magnetic Resonance Imaging (MRI) | February 24, 2021
February 24, 2021 — Detroit-based magnetic resonance...
Findings indicate that PPC and GG are highly predictive of overall upstaging by PSMA PET/CT for patients with high-risk prostate cancer

Image courtesy of UCLA Health

News | PET-CT | February 23, 2021
February 23, 2021 — A...
icobrain cva allows the quantitative assessment of tissue perfusion by reporting the volume of core and perfusion lesion by quantifying Tmax abnormality and CBF abnormality together with the mismatch volume and ratio
News | Artificial Intelligence | February 23, 2021
February 23, 2021 — icometrix, world leader in imaging...
Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne