News | X-Ray | April 13, 2020

2-D perovskite thin films boost sensitivity 100-fold compared to conventional detectors, require no outside power source, and enable low-dose dental and medical images

X-ray detectors made with 2-dimensional perovskite thin films convert X-ray photons to electrical signals without requiring an outside power source, and are a hundred times more sensitive than conventional detectors. Image courtesy of Los Alamos National Laboratory

X-ray detectors made with 2-dimensional perovskite thin films convert X-ray photons to electrical signals without requiring an outside power source, and are a hundred times more sensitive than conventional detectors. Image courtesy of Los Alamos National Laboratory


April 13, 2020 — A new X-ray detector prototype is on the brink of revolutionizing medical imaging, with dramatic reduction in radiation exposure and the associated health risks, while also boosting resolution in security scanners and research applications, thanks to a collaboration between Los Alamos National Laboratory and Argonne National Laboratory researchers.

"The perovskite material at the heart of our detector prototype can be produced with low-cost fabrication techniques," said Hsinhan (Dave) Tsai, an Oppenheimer Postdoctoral fellow at Los Alamos National Laboratory. "The result is a cost-effective, highly sensitive, and self-powered detector that could radically improve existing X-ray detectors, and potentially lead to a host of unforeseen applications."

The detector replaces silicon-based technology with a structure built around a thin film of the mineral perovskite, resulting in a hundred times more sensitivity than conventional silicon-based detectors. In addition, the new perovskite detector does not require an outside power source to produce electrical signals in response to X-rays.

High sensitivity perovskite detectors could enable dental and medical images that require a tiny fraction of the exposure that accompanies conventional X-ray imaging. Reduced exposure decreases risks for patients and medical staff alike. The fact that perovskite detectors can be made very thin allows them to offer increased resolution for highly detailed images, which will lead to improved medical evaluations and diagnoses. Lower-energy and increased-resolution detectors could also revolutionize security scanners and imaging in X-ray research applications.

Because perovskite is rich in heavy elements, such as lead and iodine, X-rays that easily pass through silicon undetected are more readily absorbed, and detected, in perovskite. As a result, perovskite significantly outperforms silicon, particularly at detecting high-energy X-rays. This is a crucial advantage when it comes to monitoring X-rays at high-energy research facilities, such as synchrotron light sources.

Perovskite films can be deposited on surfaces by spraying solutions that cure and leave thin layers of the material behind As a result, the thin-layer detectors will be much easier and cheaper to produce than silicon-based detectors, which require high-temperature metal deposition under vacuum conditions.

"Potentially, we could use ink-jet types of systems to print large scale detectors," said Tsai. "This would allow us to replace half-million-dollar silicon detector arrays with inexpensive, higher-resolution perovskite alternatives."

In addition to the promise of thin-layer perovskites in X-ray detectors, thicker layers work well provided they include a small voltage source. This suggests that their useful energy range could be extended beyond X-rays to low-energy gamma-rays.

For more information: www.lanl.gov


Related Content

News | ASTRO

October 6, 2022 ‑— Ahead of the 64th Annual Meeting of the American Society for Radiation Oncology (ASTRO), set for ...

Time October 06, 2022
arrow
News | Radiology Business

October 5, 2022 — The American College of Radiology (ACR) released an update to its ACR Appropriateness Criteria (ACR AC ...

Time October 05, 2022
arrow
News | Radiology Education

October 5, 2022 — DetectedX announced today that it will provide free access to its Radiology Online Learning Centre to ...

Time October 05, 2022
arrow
News | ARRS

October 4, 2022 — According to an article in ARRS’ American Journal of Roentgenology (AJR), large specialized referral ...

Time October 04, 2022
arrow
News | Ultrasound Imaging

October 4, 2022 — During the American College of Emergency Physicians (ACEP) 2022 Scientific Assembly (Oct. 1 – 4, San ...

Time October 04, 2022
arrow
Feature | Radiology Business

Here is a recap of what ITN viewers found most interesting during the month of September: 1. Lasting Lung Damage Seen in ...

Time October 03, 2022
arrow
News | Magnetic Resonance Imaging (MRI)

October 3, 2022 — GE Healthcare announced US FDA 510(k) clearance of its breakthrough AIR Recon DL for 3D and PROPELLER ...

Time October 03, 2022
arrow
Feature | Radiology Imaging

View the September/October digital edition of Imaging Technology News (ITN), including links to videos, comparison ...

Time September 29, 2022
arrow
News | Point-of-Care Ultrasound (POCUS)

September 27, 2022 — Fujifilm Sonosite, Inc. – the world leader in point-of-care ultrasound (POCUS) solutions – has ...

Time September 27, 2022
arrow
News | Prostate Cancer

September 26, 2022 — Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine’s Game ...

Time September 26, 2022
arrow
Subscribe Now