News | MRI Breast | February 21, 2017

Screening MRI Benefits Women at Average Risk of Breast Cancer

Breast MRI used in German study finds an additional 15.5 cancers per 1,000 women

Radiology journal, breast MRI screening, average risk women, breast cancer

Images in a 55-year-old screening participant. (a, b) Normal digital full-field mediolateral oblique (a) and craniocaudal (b) mammograms (BI-RADS category 1) show a heterogeneously dense breast (ACR category C). (c) Screening ultrasound image shows normal findings (BI-RADS category 1). (d) MR-guided biopsy enabled us to confirm the presence of an invasive high-grade triple-negative cancer (no special type [NST], pT1b, N0, M0). (d) Breast MR image shows a suspicious enhancing mass (arrow) in the left breast (BI-RADS category 5). Image courtesy of the Radiological Society of North America.

February 21, 2017 — Magnetic resonance imaging (MRI) screening improves early diagnosis of breast cancer in all women, not only those at high risk, according to a new study from Germany published online in the journal Radiology.

MRI has long been known as an effective breast cancer screening modality that offers better sensitivity than mammography and ultrasound. Currently, guidelines reserve breast MRI screening for women who have a strong family history or other specific breast cancer risk factors. MRI screening has not been considered necessary for women at average risk, and there has been resistance to expansion of MRI into this population due, in part, to concern over higher costs.

However, with breast cancer remaining a major cause of cancer death in women, there is good reason to pursue the search for improved screening methods, according to the study’s lead author, Christiane Kuhl, M.D., chair of the Department of Radiology at RWTH Aachen University in Aachen, Germany.

Between 2005 and 2013, Kuhl and colleagues studied breast MRI’s impact on 2,120 women, ages 40 to 70, with less than a 15 percent lifetime risk of breast cancer. The women had normal screening mammograms and, in the case of those with dense breast tissue, normal screening ultrasound. Breast MRI detected 60 additional breast cancers, including 40 invasive cancers, for an overall supplemental cancer detection rate of 15.5 per 1,000 women. Of the 60 cancers detected in the study group over the observation period (7,007 screening rounds), 59 were found only using MRI, one was found also by mammography, and none by mammography or ultrasound alone.

According to Kuhl, the results suggest that MRI can serve as a useful supplemental screening tool for women at average risk, especially those with dense mammographic tissue, and that MRI is superior to supplemental ultrasound for this purpose.

The results also highlight the ability of MRI in the detection of more aggressive types of cancer.

“The faster a cancer grows and the better it is in seeding metastases, the better will it be picked up early by MRI,” Kuhl said. “In our cohort, cancers found by MRI alone exhibited features of rapid growth at pathology.”

This ability is especially important in women with dense breast tissue in which aggressive cancers may be missed on mammography. Left undetected, these cancers will grow to become clinically palpable cancers, also known as interval cancers. The new study showed that, consistent with previous research, breast MRI can depict these rapidly growing cancers with high reliability.

According to Kuhl, interval cancers exhibit an adverse biologic profile and are the main driver of breast cancer mortality. Additional cancers detected by MRI screening in the study had a skewed distribution towards a higher-than-normal prevalence or incidence of rapidly growing (grade 3) cancers.

“The interval cancer rate in our study was zero percent. Not a single cancer was undetected that became palpable,” she said. “This suggests that MRI finds breast cancers that also mammography would find, but MRI detects them earlier, and it finds the cancers which, if MRI had not been done, would have progressed to interval cancers.”

For more information: www.radiology.rsna.org

References

Kuhl, C.K., Strobel, K., Bieling, H., Leutner, C., et al. "Supplemental Breast MR Imaging Screening of Women with Average Risk of Breast Cancer," Radiology. Published online Feb. 21, 2017. DOI: 10.1148/radiol.2016161444

Related Content

AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Phone call and linkage-to-care-based intervention increases mammography uptake among primary care patients at an urban safety-net hospital

Getty Images

News | Mammography | May 22, 2020
May 22, 2020 — Telephone outreach coupled with scheduling assistance significantly increased...
Remote reading of imaging studies on home picture archiving and communication systems (PACS) workstations can contribute to social distancing, protect vulnerable radiologists and others in the hospital, and ensure seamless interpretation capabilities in emergency scenarios, according to an open-access article published ahead-of-print by the American Journal of Roentgenology (AJR).

Srini Tridandapani, M.D., Ph.D.

News | PACS | May 21, 2020
May 21, 2020 — 
The Breast Imaging and Reporting System (BI-RADS) was established by the American College of Radiology to help classify findings on mammography. Findings are classified based on the risk of breast cancer, with a BI-RADS 2 lesion being benign, or not cancerous, and BI-RADS 6 representing a lesion that is biopsy-proven to be malignant.

Getty Images

News | Breast Imaging | May 19, 2020
May 19, 2020 — Women with mammographically detected breast lesions that are probably benign should have follow-up sur
Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-

Figure 1: Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-CoV-2. The CNN model identified abnormal features in the right lower lobe (white color), whereas the two radiologists labeled this CT as negative. (b) A 52-year-old female who had a history of exposure to SARS-CoV-2 and presented with fever and productive cough. Bilateral peripheral ground-glass opacities (arrows) were labeled by the radiologists, and the CNN model predicted positivity based on features in matching areas. (c) A 72-year-old female with exposure history to the animal market in Wuhan presented with fever and productive cough. The segmented CT image shows ground-glass opacity in the anterior aspect of the right lung (arrow), whereas the CNN model labeled this CT as negative. (d) A 59-year-old female with cough and exposure history. The segmented CT image shows no evidence of pneumonia, and the CNN model also labeled this CT as negative.  

News | Coronavirus (COVID-19) | May 19, 2020
May 19, 2020 — Mount Sinai researchers are the first in the country to use...
Now a research team — led by Tohoku University Professor, Wataru Yashiro — has developed a new method using intense synchrotron radiation that produces higher quality images within milliseconds.

How the bent crystal changes the direction of the X-rays. Image courtesy of Tohoku University

News | Computed Tomography (CT) | May 15, 2020
May 15, 2020 — Many will undergo a computed tomogr...
Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function.

Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function. Image courtesy of YaleNews.

News | PET Imaging | May 14, 2020
May 14, 2020 — New imaging technology allows scientists to see the widespread loss of brain synapses in early stages