News | December 11, 2014

Richardson Electronics Creates Replacement Part Division

Brings quality and efficiency through high value replacement parts and components for diagnostic imaging

CT systems, MRI Systems, Digital Radiography systems, RSNA 2014

Image courtesy of Richardson Electronics

December 11, 2014 — Richardson Electronics, Ltd. announced the launch of its Healthcare Division at RSNA 2014.

Richardson’s newly formed business unit will be focused on high quality replacement parts for the diagnostic imaging equipment market. The product portfolio will include flat panel detectors, CT and MRI replacement tubes, training and other related products and services. In addition, the medical display products formerly under the North American healthcare segment of Canvys will now be part of this new division. These display products include Image Systems diagnostic imaging displays used with PACS as well as operating room/surgical displays and related solutions.

A new website has been launched to showcase the Richardson Healthcare products and services. The expanded web content and functionality make it easier for visitors information on its full line of healthcare products and capabilities.

For more information: www.rellhealthcare.com

Related Content

ASG well positioned for growth as healthcare marketplace continues to evolve 

Allan Klotsche

News | Radiology Imaging | November 24, 2020
November 24, 2020 — Alpha Source Group (ASG), a comprehensive next-generation services partner, has named...
Videos | Coronavirus (COVID-19) | November 20, 2020
This video shows a computed tomography (CT) scroll through showing bowel ischemia and perforation (see arrows) due to
Single-slice of the chest CT showing the abnormalities. Arrows indicate the location of the breast mass (red arrow), lymphadenopathy (blue arrow), and a lung nodule (yellow arrow). Arrows not present in experimental display. Image courtesy of Psychonomic Bulletin & Review

Single-slice of the chest CT showing the abnormalities. Arrows indicate the location of the breast mass (red arrow), lymphadenopathy (blue arrow), and a lung nodule (yellow arrow). Arrows not present in experimental display. Image courtesy of Psychonomic Bulletin & Review

Feature | Radiology Imaging | November 20, 2020
There’s a classic video demonstrating how our brains process information and allocate attention in which people bounc
1H-MR spectra of 3 consecutive patients with COVID-19. Upper row: Axial FLAIR images at the corona radiata level show representative MRS voxels (black squares) from sampled periventricular regions. Lower row: Corresponding spectrum (black) and LCModel fit (red) from each patient acquired at TE = 30 ms (upper row) and TE = 288 ms (lower row). A, A patient with COVID-19-associated multifocal necrotizing leukoencephalopathy shows diffuse patchy WM lesions with markedly increased Cho and decreased NAA, as well

1H-MR spectra of 3 consecutive patients with COVID-19. Upper row: Axial FLAIR images at the corona radiata level show representative MRS voxels (black squares) from sampled periventricular regions. Lower row: Corresponding spectrum (black) and LCModel fit (red) from each patient acquired at TE = 30 ms (upper row) and TE = 288 ms (lower row). A, A patient with COVID-19-associated multifocal necrotizing leukoencephalopathy shows diffuse patchy WM lesions with markedly increased Cho and decreased NAA, as well as elevated Lac. B, A patient with COVID-19 after recent PEA cardiac arrest with subtle FLAIR hyperintense white matter changes also shows elevated Cho/Cr and decreased NAA/Cr ratios. However, these derangements are less severe than in the patient in A. There is no clear elevation of Lac. C, A patient with COVID-19 without encephalopathy or recent severe hypoxia has normal Cho/Cr, with mildly decreased NAA/Cr and no lactate elevation. Cho, Choline; NAA, N-Acetyl-Aspartate; mI, Myo-Inositol; Lac, Lactate; Glx, Glutamate + Glutamine. Image courtesy of AJNR

News | Coronavirus (COVID-19) | November 19, 2020
November 19, 2020 — One of the first spectroscopic imaging-based studies of neurological injury in...