News | PET Imaging | July 17, 2018

Researchers Trace Parkinson's Damage in the Heart

PET scans help visualize mechanisms behind nerve damage common among Parkinson’s patients, could help diagnose the disease earlier

Researchers Trace Parkinson’s Damage in the Heart

July 17, 2018 — A new way to examine stress and inflammation in the heart will help Parkinson’s researchers test new therapies and explore an unappreciated way the disease puts people at risk of falls and hospitalization.

By the time Parkinson’s disease patients are diagnosed — typically based on the tremors and motor-control symptoms most associated with the disease — about 60 percent of them also have serious damage to the heart’s connections to the sympathetic nervous system. When healthy, those nerves spur the heart to accelerate its pumping to match quick changes in activity and blood pressure.

“This neural degeneration in the heart means patients’ bodies are less prepared to respond to stress and to simple changes like standing up,” said Marina Emborg, a University of Wisconsin–Madison professor of medical physics and Parkinson’s researcher at the Wisconsin National Primate Research Center. “They have increased risk for fatigue, fainting and falling that can cause injury and complicate other symptoms of the disease.”

Emborg, graduate student Jeanette Metzger, and colleagues including UW–Madison specialists in cardiology and medical imaging developed a method for tracking the mechanisms that cause the damage to heart nerve cells. They tested the method in the human-like nervous system and heart of monkeys, and published their results in the journal npj Parkinson’s Disease.

Ten rhesus macaque monkeys served as models for Parkinson’s symptoms, receiving doses of a neurotoxin that caused damage to the nerves in their hearts in much the same way Parkinson’s affects human patients. Once before and twice in the weeks after, the monkeys underwent positron emission tomography (PET) scans to track chemical processes in the body using radioactive tracers.

The UW–Madison researchers used three different tracers, called radioligands, to map three different things in the left ventricle (the strongest pumping chamber) of monkeys’ hearts:

  • Where the nerves extending into the heart muscle were damaged;
  • Where the heart tissue was experiencing the most inflammation; and
  • Where they found the most oxidative stress.

The scans were accurate enough to allow the researchers to focus on changes over time in specific areas of the heart’s left ventricle.

“We know there is damage in the heart in Parkinson’s, but we haven’t been able to look at exactly what’s causing it,” said Metzger, lead author of the study. “Now we can visualize in detail where inflammation and oxidative stress are happening in the heart, and how that relates to how Parkinson’s patients lose those neuronal connections in the heart.”

By tracing the progression of nerve damage and the progression of potential causes of that damage, the radioligands can also be used to test the efficacy of new treatments to protect the neurons that regulate the activity of the patients’ hearts.

The researchers gave half the monkeys in the study a drug, pioglitazone, that has shown promise in protecting central nervous system cells from inflammation and oxidative stress.

“The recovery of nerve function is much greater in the pioglitazone-treated animals,” said Emborg, whose work is supported by the National Institutes of Health. “And what’s interesting is this method allows us to identify very specifically the differences the treatment made — separately for inflammation and for oxidative stress — across the heart.”

The results suggest human patients could benefit from the radioligand scans, and Metzger wonders if it could help catch some Parkinson’s patients before their other symptoms progress.

“Much of the neural degeneration that occurs in the heart can happen very early in the course of the disease. A lot of patients have problems with their heart before they have motor problems,” she said. “While these PET techniques potentially provide a way to test drugs, they may also be used as tools to understand the mechanisms underlying early heart nerve damage.”

The heart problems opened to examination by the new imaging methods are not limited to Parkinson’s disease. Heart attacks, diabetes and other disorders cause similar damage to nerves in the heart, and those patients and potential therapies could also benefit from the new visualization method.

Emborg and Metzger’s UW–Madison collaborators included psychology Professor Emerita Colleen Moore, cardiovascular medicine Professor Timothy Kamp, neurology Professor Catherine Gallagher, and medical physics Professor Bradley Christian and emeritus professors Jerry Nickels and James Holden.

For more information: www.nature.com/npjparkd

Reference

Metzger J.M., Moore C.F., Boettcher C.A., et al. "In vivo imaging of inflammation and oxidative stress in a nonhuman primate model of cardiac sympathetic neurodegeneration." npj Parkinson's Disease, July 13, 2018. https://doi.org/10.1038/s41531-018-0057-1

Related Content

Osprey Medical and GE Healthcare Launch Acute Kidney Injury Educational Program
News | Angiography | September 25, 2018
September 21, 2018 — Osprey Medical announced a collaboration with GE Healthcare on Osprey’s Be Kind to Kidneys campa
Philips Showcases Integrated Solutions for Cardiovascular Care at TCT 2018
News | Cardiac Imaging | September 20, 2018
At the Transcatheter Cardiovascular Therapeutics (TCT) annual meeting, Sept. 21–25 in San Diego, Philips is showcasing...
LVivo EF Cardiac Tool Now Available for GE Vscan Extend Handheld Mobile Ultrasound
Technology | Cardiovascular Ultrasound | September 19, 2018
DiA Imaging Analysis Ltd. (DiA), a provider of artificial intelligence (AI)-powered ultrasound analysis tools,...
Siemens Healthineers Announces First U.S. Install of Somatom go.Top CT
News | Computed Tomography (CT) | September 17, 2018
September 17, 2018 — The Ohio State University Wexner Medical Center in Columbus recently became the first healthcare
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Rapid Cardiac MRI Technique May Cut Costs, Boost Care in Developing World
News | Magnetic Resonance Imaging (MRI) | August 29, 2018
A newly developed rapid imaging protocol quickly and cheaply diagnosed heart ailments in patients in Peru, according to...
Brain Study of 62,454 Scans Identifies Drives of Brain Aging
News | SPECT Imaging | August 27, 2018
In the largest known brain imaging study, scientists from five institutions evaluated 62,454 brain single photon...
Abnormal Protein Concentrations Found in Brains of Military Personnel With Suspected CTE

Researchers are using the tracer, which is injected into a patient, then seen with a PET scan, to see if it is possible to diagnose chronic traumatic encephalopathy in living patients. In this image, warmer colors indicate a higher concentration of the tracer, which binds to abnormal proteins in the brain. Credit UCLA Health.

News | PET Imaging | August 24, 2018
August 24, 2018 — In a small study of