While doctors have used low-intensity ultrasound as a medical imaging tool since the 1950s, experts at the University of Waterloo are using and extending models that help capture how high-intensity focused ultrasound (HIFU) can work on a cellular level.

The InSightec ExAblate focused ultrasound system developed to treat essential tremor. 


August 24, 2021 — Researchers are bringing the use of acoustic waves to target and destroy cancerous tumors closer to reality.

While doctors have used low-intensity ultrasound as a medical imaging tool since the 1950s, experts at the University of Waterloo are using and extending models that help capture how high-intensity focused ultrasound (HIFU) can work on a cellular level.

Led by Siv Sivaloganathan, an applied mathematician and researcher with the Centre for Math Medicine at the Fields Institute, the study found by running mathematical models in computer simulations that fundamental problems in the technology can be solved without any risk to actual patients. 

Sivaloganathan, together with his graduate students June Murley, Kevin Jiang and postdoctoral fellow Maryam Ghasemi, creates the mathematical models used by engineers and doctors to put HIFU into practice. He said his colleagues in other fields are interested in the same problems, “but we’re coming at this from different directions”.

“My side of it is to use mathematics and computer simulations to develop a solid model that others can take and use in labs or clinical settings. And although the models are not nearly as complex as human organs and tissue, the simulations give a huge head start for clinical trials.”

One of the obstacles that Sivaloganathan is currently working to overcome is that in targeting cancers, HIFU also poses risks to healthy tissue. When HIFU is being used to destroy tumors or cancerous lesions, the hope is that good tissue won’t be destroyed. The same applies when focusing the intense acoustic waves on a tumour on the bone where lots of heat energy gets released. Sivaloganathan and his colleagues are working to understand how the heat dissipates and if it damages the bone marrow.

Other researchers working with Sivaloganathan include engineers, who are building the physical technology, and medical doctors, in particular, James Drake, chief surgeon at Hospital for Sick Children, looking at the practical application of HIFU in clinical settings.

Sivaloganathan believes HIFU will make significant changes in cancer treatments and other medical procedures and treatments. HIFU is already finding practical application in the treatment of some prostate cancers.

“It’s an area that I think is going to take center stage in clinical medicine,” he said. “It doesn’t have the negative side effects of radiation therapy or chemotherapy. There are no side effects other than the effect of heat, which we are working on right now. It also has applications as a new way to break up blood clots and even to administer drugs.”

Sivaloganathan’s new research paper on math modelling for HIFU, “Dimension estimate of uniform attractor for a model of high intensity focussed ultrasound-induced thermotherapy,” with co-authors Messoud Efendiyev and June Murley, was recently published in the Bulletin of Mathematical Biology.

For more information: medicalxpress.com/

Related High-intensity Focused Ultrasound Content:

High-intensity Focused Ultrasound Offers New Opportunities

Ultrasound Technique Treats Prostate Cancer with Minimal Side Effects

Destroying Cancer Cells with Non-surgical Ultrasound Treatment

First U.S. Study Shows Promising Outcomes for High-intensity Focused Ultrasound for Prostate Cancer


Related Content

News | Radiology Business

May 26, 2023 — Siemens Healthineers and CommonSpirit Health have agreed to acquire Block Imaging. This new acquisition ...

Time May 26, 2023
arrow
News | Computed Tomography (CT)

May 26, 2023 — GE HealthCare, a leading medical technology innovator, announced today its largest ever CT deal in the ...

Time May 26, 2023
arrow
News | Pediatric Imaging

May 24, 2023 — A new advanced form of computed tomography (CT) imaging called photon-counting computed tomography (PCCT) ...

Time May 24, 2023
arrow
News | PET Imaging

May 22, 2023 — New research finds that the brains of otherwise healthy military personnel who are exposed to explosions ...

Time May 22, 2023
arrow
News | ACR

May 19, 2023 — The Radiology Leadership Institute (RLI) named Norman J. Beauchamp Jr., MD, MHS, FACR, Arl Van Moore Jr ...

Time May 19, 2023
arrow
News | Radiology Imaging

May 19, 2023 — Asymptomatic adults with a high accumulation of fat in their muscles, known as myosteatosis, are at an ...

Time May 19, 2023
arrow
News | Computed Tomography (CT)

May 18, 2023 — Royal Philips, a global leader in health technology, announced the launch of the Philips CT 3500, a new ...

Time May 18, 2023
arrow
News | Digital Radiography (DR)

May 18, 2023 — Carestream Health’s new, versatile DRX-LC Detector is designed to improve patient comfort, image quality ...

Time May 18, 2023
arrow
News | Teleradiology

May 17, 2023 — Online workflow systems for off-site radiologists are one reason for health care delays that cost ...

Time May 17, 2023
arrow
News | Digital Radiography (DR)

May 17, 2023 — After nearly a year of official review and verification, Director of Global Sales Mike Cairnie of MinXray ...

Time May 17, 2023
arrow
Subscribe Now