News | Ultrasound Imaging | November 02, 2020

Destroying Cancer Cells with Non-surgical Ultrasound Treatment

Study demonstrated the mechanism behind the secondary generation of cavitation clouds that mechanically fractionates surrounding tissue in focused ultrasound treatment

Conceptual diagram of bio-organizational crushing technology based on high-intensity concentric ultrasonography. Image courtesy of Korea Institue of Science and Technology(KIST)

Conceptual diagram of bio-organizational crushing technology based on high-intensity concentric ultrasonography. Image courtesy of Korea Institue of Science and Technology(KIST)

November 2, 2020 — Focusing ultrasound energy on a target site in the body to generate heat can burn and destroy the tissue in the site without a surgical procedure. This method is clinically applied to treat uterine fibroids, prostatic hyperplasia, prostate cancer, metastatic bone tumor and other types of tumor to destroy tumor cells using heat. However, there is a potential problem that the surrounding tissue may be burned in the process due to heat diffusion.

In 2019, at the Korea Institute of Science and Technology (KIST) Center for Bionics, Ki Joo Pahk, M.D.'s research team confirmed the possibility of precisely fractionating target tumor cells, as though it is cut out using a knife, without causing heat damage to any other part of the body by using high-intensity focused ultrasound (HIFU), an ultrasound with an acoustic pressure in megapascals (MPa) that is much more powerful than existing ultrasound, and revealed the mechanism behind the procedure.(Ultrasonics Sonochemistry. 2019, 53, 164-177)

In the process of physically destroying the tissue without the use of heat, a boiling vapor bubble is generated at the target site of the HIFU, and it is by the kinetic energy of this primary vapor bubble that the target tumor tissue gets destroyed. However, during the process, cavitation bubble clouds can be subsequently generated between the boiling bubble and the HIFU transducer, leading to unwanted cell destruction. This made it necessary to identify the cause of their formation and to accurately predict the locations of their occurrence.

In order to reveal the mechanism of cavitation bubble clouds formation occurring when tumor tissue is removed by HIFU, the research team at KIST developed a mathematical model as part of their follow-up study and examined the impact of the primary boiling vapor bubble on nonlinear wave propagation. The results showed that the secondary generation of bubbles was caused by a constructive interference of the backscattered shockwave by the boiling bubble with the incoming incident shockwaves and it is within the range of this interference that the secondary bubbles formed. Based on the images obtained using a high-speed camera, it was found that the area where the interference occurred and the area where the secondary bubbles were generated were closely matched.

These findings not only explain the mechanism behind the secondary bubbles formation but also help predict where they will occur, thereby presenting the possibility of destroying target tissue with greater safety and precision.

Pahk from KIST said, "This study has shown that cavitation bubble clouds can be subsequently generated as a result of a shock scattering effect after a boiling vapor bubble forms where the ultrasound is focused. Using the mathematical developed in this study, it will be possible to predict the locations of bubble formation and the potential site that gets destroyed. I hope that the ultrasound technology under development will be developed in an ultra-precision focused ultrasound technology enabling physical destruction of only the tumor tissue, without the need for surgery, so that it can be applied clinically in the future."

For more information: www.nst.re.kr/nst_en/

Related Content

Axial fused PET/CT image shows intense uptake (arrowhead) in the deep pelvis corresponding to the left lobe of the prostate in a 62-year-old with a history of prostate cancer treated with radiation therapy.  The CT scan does not show the tumor. Image courtesy of the the Radiological Society of North America.

Axial fused PET/CT image shows intense uptake (arrowhead) in the deep pelvis corresponding to the left lobe of the prostate in a 62-year-old with a history of prostate cancer treated with radiation therapy. The CT scan does not show the tumor. Image courtesy of the the Radiological Society of North America.

Feature | Treatment Planning | March 05, 2021 | By Melinda Taschetta-Millane
The decision to offer...
GE Healthcare introduced its artificial intelligence (AI) automation features on its Voluson Swift ultrasound platform at the 2020 Radiological Society of North America (RSNA) virtual meeting. Features of this system include semi-automated contouring, auto identification of fetal anatomy and positioning on imaging. AI is seeing increasing integration in ultrasound systems from numerous vendors.

GE Healthcare introduced its artificial intelligence (AI) automation features on its Voluson Swift ultrasound platform at the 2020 Radiological Society of North America (RSNA) virtual meeting. Features of this system include semi-automated contouring, auto identification of fetal anatomy and positioning on imaging. AI is seeing increasing integration in ultrasound systems from numerous vendors.

Feature | Ultrasound Imaging | March 04, 2021 | By Dave Fornell, Editor
Recent advances in ultrasound image sy...
A single image of a human brain using a magnetic resonance imaging (MRI) machine. Image courtesy of Dr Leon Kaufman. University Of California, San Francisco

A single image of a human brain using a magnetic resonance imaging (MRI) machine. Image courtesy of Dr Leon Kaufman. University Of California, San Francisco

News | Ultrasound Imaging | March 03, 2021
March 3, 2021 — A type of ultrasound scan can detect
A new study by Rashi Mehta--a researcher with the WVU School of Medicine and Rockefeller Neuroscience Institute--finds that focused ultrasound may induce an immunological healing effect in the brains of Alzheimer's patients.

A new study by Rashi Mehta--a researcher with the WVU School of Medicine and Rockefeller Neuroscience Institute--finds that focused ultrasound may induce an immunological healing effect in the brains of Alzheimer's patients. Image courtesy of Caylie Silveria/West Virginia University

News | Focused Ultrasound Therapy | March 02, 2021
March 2, 2021 — West Virginia University scientists used...
An example of cardiac ultrasound longitudinal strain measurements on the Epsilon EchoInsight software. This can be used to assess cardiotoxicity from chemotherapy agents. 

An example of cardiac ultrasound longitudinal strain measurements on the Epsilon EchoInsight software. This can be used to assess cardiotoxicity from chemotherapy agents. 

News | Cardio-oncology | February 25, 2021
February 25, 2020 — Results of a multi-centre, international, clinical trial co-led by Peter Munk Cardiac Centre (PMC
Findings indicate that PPC and GG are highly predictive of overall upstaging by PSMA PET/CT for patients with high-risk prostate cancer

Image courtesy of UCLA Health

News | PET-CT | February 23, 2021
February 23, 2021 — A...
F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

F-18 FES PET images of patients with ER+/PR+/HER2- invasive ductal carcinoma. Left panel: Progressive disease seen at the 8-week time-point in a patient on sequential therapy. Right panel: Stable disease through all 3 time-points, remaining on study therapy for 6.7 months until disease progression on combined vorinostat aromatase inhibitor therapy. Image created by Lanell M Peterson, Research Scientist, University of Washington Medical Oncology, Seattle WA.

News | Molecular Imaging | February 22, 2021
February 22, 2021 — Molecular imaging