Sponsored Content | Webinar | Radiation Therapy| August 28, 2018

WEBINAR: Treating Tumors that Move: The Promise and Practice of Real-time MR Image Guidance During Radiation Beam Delivery

Webinar is sponsored by ViewRay


Respiratory tumor motion often complicates the delivery of precision radiation treatment. Over the past two decades, radiotherapy researchers and clinicians have pursued several approaches to motion management. However, the approaches lacked continuous, high-quality soft tissue visualization linked to an automated beam-gating technology that would see when a tumor moved out of margin range and halt the delivery of radiation until it returned to a prescribed area (PTV).

With the introduction of magnetic resonance image (MRI) guidance and real-time image guidance during beam delivery, the ability to lessen or eliminate radiation dose to surrounding tissues and organs is achievable. Several studies have demonstrated: (1) the ability to reduce to a minimum the margin expansion necessary to account for motion error while reducing doses to nearby organs at risk, and (2) the ability to obtain duty cycles equal to or greater than those common to conventional gating.

In this webinar, two speakers will share their clinical experience with this MRI-Guided RT technology.

This webinar took place Sept. 20, 2018 — Register to view the archive version the webinar

 

Presenters:

John Ng, M.D.
Assistant Professor and Director of Medical Student Education in Radiation Oncology at Weill Cornell Medicine
[email protected]

John Ng is a Board Certified Radiation Oncologist and Assistant Professor of Radiation Oncology at Weill Cornell Medical College/New York Presbyterian Hospital. Dr. Ng attended Columbia University and then received an M.S. degree in Biophysics from Harvard University. He obtained his M.D. degree from Harvard Medical School, jointly with the Massachusetts Institute of Technology, as part of the Health Sciences and Technology (HST) program. Joining Weill Cornell Medical Center, he serves as attending physician for Breast Oncology and for Gastrointestinal Oncology. His current focus is on exploring emerging radiation technologies such as magnetic resonance imaging (MRI) guided radiation as a way of amplifying the host immune response to cancer cells.

 

Kathryn Mittauer, Ph.D., DABR
Staff Medical Physicist at University of Wisconsin-Madison
[email protected]

Mittauer is a staff medical physicist and researcher at the University of Wisconsin-Madison. She has specialized in clinical implementation and coverage of MR-guided radiotherapy with the ViewRay MRIdian system since 2015. She has a master’s degree in medical physics from the University of Kentucky and a doctorate in medical physics from the University of Florida. She completed her residency in medical physics at the University of Wisconsin-Madison. Her research efforts include using online adaptive MR-guided radiotherapy to assess normal tissue toxicities and dose escalation strategies.

 

About ViewRay

ViewRay Inc. (Nasdaq: VRAY), designs, manufactures and markets the MRIdian radiation therapy system. MRIdian is built upon a proprietary high-definition MR imaging system designed from the ground up to address the unique challenges and clinical workflow for advanced radiation oncology. Unlike MR systems used in diagnostic radiology, MRIdian’s high-definition MR was purposely built to address specific challenges, including beam distortion, skin toxicity and other concerns that may potentially arise when high magnetic fields interact with radiation beams. ViewRay and MRIdian are registered trademarks of ViewRay Inc.

 

Register to view the archive version the webinar

Related Content

MRI Targeted biopsy is performed using cognitive fusion more easily with anatomical guidance based on the radiology report. MRI targets can be identified quickly in real-time along with micro-ultrasound targets, which may have been missed on MRI.

MRI Targeted biopsy is performed using cognitive fusion more easily with anatomical guidance based on the radiology report. MRI targets can be identified quickly in real-time along with micro-ultrasound targets, which may have been missed on MRI. Image courtesy of Exact Imaging

Feature | Prostate Cancer | January 20, 2021 | By Brian Wodlinger, Ph.D.
Historically when a patient had an elevated PSA (prostate specific antigen) test their urologist would take the next
The exceptionally high dose rate of the FLASH Beam is 3,000 times higher than normal therapy treatment (300 Gray per second vs. 0.1 Gray per second, Gray being a standard unit measuring absorbed radiation). Instead of treatment over 20 seconds, an entire treatment is completed in 6 milliseconds, giving the therapy its nickname, "FLASH." Image courtesy of Brian Pogue, PhD

The exceptionally high dose rate of the FLASH Beam is 3,000 times higher than normal therapy treatment (300 Gray per second vs. 0.1 Gray per second, Gray being a standard unit measuring absorbed radiation). Instead of treatment over 20 seconds, an entire treatment is completed in 6 milliseconds, giving the therapy its nickname, "FLASH." Image courtesy of Brian Pogue, PhD

News | Linear Accelerators | January 20, 2021
January 20, 2021 — A joint team of researchers from Radiation Oncology at Dartmouth's and...
Novel Coronavirus SARS-CoV-2 Transmission electron micrograph of SARS-CoV-2 virus particles, isolated from a patient. Image captured and color-enhanced at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: National Institute of Allergy and Infectious Diseases, NIH

Novel Coronavirus SARS-CoV-2 Transmission electron micrograph of SARS-CoV-2 virus particles, isolated from a patient. Image captured and color-enhanced at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Image courtesy of  National Institute of Allergy and Infectious Diseases (NIH)

News | Coronavirus (COVID-19) | January 15, 2021
January 15, 2021 — In one of the first studies to examine the impact of the...
The "US Prostate Cancer Nuclear Medicine Diagnostics Market to 2027 - Country Analysis and Forecast by Type; PET Product" report has been added to ResearchAndMarkets.com's offering. The prostate cancer nuclear medicine diagnostics market in the US was valued at $194.47M in 2019 and is expected to grow at a CAGR of 10.6% from 2020 to 2027 to reach $431.76M by 2027.

Getty Images

News | Prostate Cancer | January 13, 2021
January 13, 2021 — The ...
A study led by researchers at the UCLA Jonsson Comprehensive Cancer Center has found that magnetic resonance imaging, or MRI, frequently underestimates the size of prostate tumors, potentially leading to undertreatment.

A study led by researchers at the UCLA Jonsson Comprehensive Cancer Center has found that magnetic resonance imaging, or MRI, frequently underestimates the size of prostate tumors, potentially leading to undertreatment.

News | Prostate Cancer | January 11, 2021
January 11, 2021 — A study
Mirion Technologies, Inc., a global provider of innovative radiation detection and measurement solutions, announced that it has acquired Sun Nuclear Corporation. Sun Nuclear is the global leader in radiation oncology quality assurance, delivering patient safety solutions for diagnostic imaging and radiation therapy centers around the world.
News | Quality Assurance (QA) | January 08, 2021
January 8, 2021 — Mirion Technologies, Inc., a global provider of
RAD Technology Medical Systems (RAD) announced it is expanding its portfolio of patented modular healthcare solutions in 2021 with the introduction of a compact shielding facility designed to accommodate the latest models of low energy, self-shielded linear accelerators (linacs) that are now available worldwide. 

Image courtesy of Siemens Healthineers

News | Linear Accelerators | January 04, 2021
January 4, 2021 — RAD Technology Medical Systems (RAD) ann
RaySearch Laboratories AB has launched the latest release of its widely adopted treatment planning system. RayStation 10B adds support for brachytherapy planning and a new GPU Monte Carlo algorithm, which typically cuts final dose computation times to less than five seconds.
News | Brachytherapy Systems | December 29, 2020
December 29, 2020 — RaySearch Laboratories AB has launched the latest release of its widely adopted treatment plannin
C-RAD has been selected as the partner to implement surface tracking technology for three proton cancer treatment centers in the U.S.
News | Proton Therapy | December 28, 2020
December 28, 2020 — C-RAD offers a specific version of its Catalyst System for use in...