Sponsored Content | Webinar | Treatment Planning| May 15, 2017

WEBINAR: Advances in CT to Enhance Radiation Therapy Planning

This webinar is sponsored by Philips Healthcare

 Philips_SmartArc

The webinar "Advances in Computed Tomography (CT) to Enhance Radiation Therapy Planning," will offer an overview of the use of CT simulation in radiation therapy and the technologies available to reduce image artifacts that may impact the quality of care. 

The webinar took place June 7, 2017, and the archive version is available immediately when you register.

Register for this webinar

This webinar is sponsored by Philips Healthcare.

 

Statement of Purpose
CT simulation is the current standard of care for radiation therapy treatment planning due to its excellent geometric fidelity and relationship to material density required for dose calculation. However, image artifacts may be detrimental to treatment planning accuracy. This talk will describe the state of the art of CT artifact reduction, particularly for metal artifacts and potential impacts on radiation therapy planning. Furthermore, as we image more frequently for adaptive planning purposes and adhere to as low as reasonably achievable (ALARA) principles, dose reduction and image optimization without information loss is essential. Concepts such as incorporating advanced CT reconstruction algorithms such as iterative and model-based reconstruction will be discussed. The impact of using these algorithms in the context of radiation therapy will be described. Finally, consideration will be given to emerging CT applications on the horizon.

 

Learning Objectives
Upon completion of this activity, participants will be able to:

• Review causes of CT image artifacts and potential impacts on treatment planning.
• Explain the state of the art for metal artifact reduction technologies in CT and their potential impact on clinical treatment planning.
• Define typical CT doses in the context of radiation therapy.
• Discuss existing CT technologies to lower dose in image acquisition and examine the potential clinical impact in radiation oncology.
• Describe emerging CT applications under development and use in radiation oncology.

 

Intended Audience:
This activity is intended for radiation oncologists, medical physicists, dosimetrists, and all staff involved in imaging used for oncology treatment planning and simulation.

 

Speaker:

Carri K. Glide-Hurst, Ph.D., DABRCarri K. Glide-Hurst, Ph.D., DABR
Director of Translational Research
Henry Ford Health System

Glide-Hurst obtained her Ph.D. in medical physics from Wayne State University in 2007, focusing her efforts on breast ultrasound tomography and utilizing acoustic parameters for breast density evaluation.  She then spent two years in postdoctoral training in the Department of Radiation Oncology at William Beaumont Hospital, with an emphasis on motion management techniques in lung cancer.  She has since been at Henry Ford Health Systems in Detroit, where she currently holds the position of director of translational research. Her primary clinical and research focus includes the implementation of CT and MR simulation (MR-SIM) into radiation oncology and treatment planning. Glide-Hurst is the co-chair of AAPM Task Group 284 - Magnetic Resonance Imaging - Simulation in Radiotherapy: Considerations for Clinical Implementation, Optimization, and Quality Assurance.  Glide-Hurst was awarded a five-year NIH R01 grant on the Development of Anatomical Patient Models to Facilitate MR-only Treatment Planning.  She has published more than 35 peer-reviewed publications and  about 100 abstracts related to imaging in radiation therapy.

 

Register for this webinar

Related Content

News | Proton Therapy

June 27, 2022 — Varian, a Siemens Healthineers company, announced that the U.S. Food and Drug Administration (FDA) ...

Time June 28, 2022
arrow
News | Radiation Oncology

June 27, 2022 — Neutron Therapeutics, Inc (NT) and the University Hospital of Brussels (H.U.B) today announced that they ...

Time June 28, 2022
arrow
News | Cardiac Imaging

June 24, 2022 — The Radiological Society of North America (RSNA) reports that Coronary Artery Calcium (CAC) scoring with ...

Time June 24, 2022
arrow
News | Lung Imaging

June 24, 2022 — Xoran Technologies announced they have begun work on Phase 2 of their mobile lung grant with the goal to ...

Time June 24, 2022
arrow
News | Radiation Therapy

June 24, 2022 — Recently, a collaborated research team led by Prof. LI Hai and Hongzhi Wang from Hefei Institutes of ...

Time June 24, 2022
arrow
News | Radiation Therapy

June 23, 2022 — RaySearch Laboratories AB announced the release of the latest version of RayCare*, the next generation ...

Time June 23, 2022
arrow
News | Artificial Intelligence

June 22, 2022 — Gradient Health, a medical technology company based in North Carolina, announced a new initiative which ...

Time June 22, 2022
arrow
News | Radiation Therapy

June 17, 2022 — Accuray Incorporated and Limbus AI Inc. announced they are partnering to augment Accuray adaptive ...

Time June 17, 2022
arrow
News | Computed Tomography (CT)

June 16, 2022 — Xoran Technologies has recently received a patent for a modular computed tomography (CT) system assembly ...

Time June 16, 2022
arrow
News | Artificial Intelligence

June 14, 2022 — According to ARRS’ American Journal of Roentgenology (AJR), incorporating AI support into clinical ...

Time June 14, 2022
arrow
Subscribe Now