March 4, 2008 - By using a dual-source technique on a single computed tomography (CT) system, a research team at the Medical University of South Carolina’s (MUSC) Heart & Vascular Center was able to make a comprehensive diagnosis of heart disease, according to a report published in the current issue Circulation.
The team, led by Balazs Ruzsics, M.D., Ph.D.; Eric Powers, M.D., medical director of MUSC Heart and Vascular Center; and U. Joseph Schoepf, M.D., director of CT Research and Development, explored how CT scans can now detect blocked arteries and narrowing of the blood vessels in the heart in addition to poor blood flow in the heart muscle.
The single-scan technique would also provide considerable cost savings, as well as greater convenience and reduced radiation exposure for patients. For their approach, the MUSC physicians used a Dual-Source CT scanner. The MUSC scanner was the first unit worldwide that was enabled to acquire images of the heart with the ‘dual-energy’ technique. While the CT scan "dissects" the heart into thin layers, enabling doctors to detect diseased vessels and valves, it could not detect blood flow. The MUSC researchers added two X-ray spectrums, each emitting varying degrees of energy like a series of X-rays, to gain a static image of the coronary arteries and the heart muscle. This dual-energy technique of the CT scan enables mapping the blood distribution within the heart muscle and pinpointing areas with decreased blood supply.
All this is accomplished with a single CT scan within one short breath-hold of approximately 15 seconds or less. In addition to diagnosing the heart, the CT scan also permits doctors to check for other diseases that may be lurking in the lungs or chest wall.
MUSC, like most cardiovascular centers, had traditionally relied on several imaging modalities, such as cardiac catheterization, nuclear medicine or magnetic resonance (MR) scanners.
"This technique could be the long coveted ‘one-stop-shop’ test that allows us to look at the heart vessels, heart function and heart blood flow with a single CT scan and within a single breath-hold," said Dr. Schoepf, the lead investigator of the study.
Based on their initial observations, Heart & Vascular Center physicians have launched an intensive research project aimed at systemically comparing the new scanning technique to conventional methods for detecting decreased blood supply in the heart muscle.

For more information: www.musc.edu or www.muschealth.com


Related Content

News | Radiology Business

April 23, 2024 — A diverse writing group—lead by authors at the University of Toronto—have developed an approach for ...

Time April 23, 2024
arrow
News | Clinical Trials

April 16, 2024 — QT Imaging Holdings, Inc., a medical device company engaged in research, development, and ...

Time April 16, 2024
arrow
News | Mammography

April 12, 2024 — Bayer and Hologic, Inc. announced a first-of-its-kind collaboration to deliver a coordinated solution ...

Time April 12, 2024
arrow
News | Mammography

April 12, 2024 — GE HealthCare, a leader in breast health technology and diagnostics, will feature its latest breast ...

Time April 12, 2024
arrow
News | Radiation Therapy

March 28, 2024 — RefleXion Medical, Inc., a therapeutic oncology company, and Limbus AI, Inc., a provider of software ...

Time March 28, 2024
arrow
News | Artificial Intelligence

March 18, 2024 — RamSoft, a global leader in novel cloud-based RIS/PACS radiology solutions for imaging centers and ...

Time March 18, 2024
arrow
News | Breast Imaging

March 18, 2024 — QT Imaging Holdings, Inc., a medical device company engaged in research, development, and ...

Time March 18, 2024
arrow
Feature | Computed Tomography (CT) | By Melinda Taschetta-Millane

Computed Tomography (CT) continues to be a rapidly evolving technology with many new advancements, as displayed and ...

Time March 07, 2024
arrow
News | Radiology Imaging

March 5, 2024 — Life Guard Imaging, a pioneering leader in preventative imaging services, is thrilled to announce its ...

Time March 05, 2024
arrow
News | Artificial Intelligence

February 29, 2024 — AIxSCAN, Inc., a Sunnyvale, CA-based developer of a next generation artificial intelligence (AI) ...

Time February 29, 2024
arrow
Subscribe Now