News | Radiation Dose Management | August 19, 2016

Public Perception of Long-term Health Effects of Atomic Bomb Radiation Worse than Reality

New analysis of survivor studies finds cancer incidence not significantly higher for survivors than the average population; data may impact understanding of ionizing radiation in medical imaging

atomic bombs, radiation exposure, long-term health effects, Bertrand Jordan, study

August 19, 2016 — The detonation of atomic bombs over the Japanese cities of Hiroshima and Nagasaki in August 1945 resulted in horrific casualties and devastation. The long-term effects of radiation exposure also increased cancer rates in the survivors. But public perception of the rates of cancer and birth defects among survivors and their children is in fact greatly exaggerated when compared to the reality revealed by comprehensive follow-up studies. The reasons for this mismatch and its implications are discussed in a Perspectives review of the Hiroshima/Nagasaki survivor studies published in the August issue of the journal Genetics, a publication of the Genetics Society of America.

The new data may impact the way people think about ionizing radiation in medical imaging, since most of the safety guidelines regarding X-ray dose is based on the Hiroshima and Nagasaki bombings. 

“Most people, including many scientists, are under the impression that the survivors faced debilitating health effects and very high rates of cancer, and that their children had high rates of genetic disease,” said Bertrand Jordan, an author and a molecular biologist at UMR 7268 ADÉS, Aix-Marseille Université/EFS/CNRS, in France. “There’s an enormous gap between that belief and what has actually been found by researchers.”

Jordan’s article contains no new data, but summarizes over 60 years of medical research on the Hiroshima/Nagasaki survivors and their children and discusses reasons for the persistent misconceptions. The studies have clearly demonstrated that radiation exposure increases cancer risk, but also show that the average lifespan of survivors was reduced by only a few months compared to those not exposed to radiation. No health effects of any sort have so far been detected in children of the survivors.

Approximately 200,000 people died in the bombings and their immediate aftermath, mainly from the explosive blast, the firestorm it sparked and from acute radiation poisoning. Around half of those who survived subsequently took part in studies tracking their health over their entire lifespan. These studies began in 1947 and are now conducted by a dedicated agency, the Radiation Effects Research Foundation (RERF), with funding from the Japanese and U.S. governments. The project has followed approximately 100,000 survivors and 77,000 of their children, plus 20,000 people who were not exposed to radiation.

This massive data set has been uniquely useful for quantifying the risks of radiation because the bombs served as a single, well-defined exposure source, and because the relative exposure of each individual can be reliably estimated using the person’s distance from the detonation site. The data has been particularly invaluable in setting acceptable radiation exposure limits for nuclear industry workers and the general public.

Cancer rates among survivors were higher compared to rates in those who had been out of town at the time. The relative risk increased according to how close the person was to the detonation site, their age (younger people faced a greater lifetime risk) and their sex (greater risk for women than men). However, most survivors did not develop cancer. Incidence of solid cancers between 1958 and 1998 among the survivors were 10 percent higher, which corresponds to approximately 848 additional cases among 44,635 survivors in this part of the study. However, most of the survivors received a relatively modest dose of radiation. In contrast, those exposed to a higher radiation dose of 1 Gray (approximately 1,000 times higher than current safety limits for the general public) bore a 44 percent greater risk of cancer over the same time span (1958-1998). Taking into consideration all causes of death, this relatively high dose reduced average lifespan by approximately 1.3 years.

Although no differences in health or mutations rates have yet been detected among children of survivors, Jordan suggests that subtle effects might one day become evident, perhaps through more detailed sequencing analysis of their genomes. But it is now clear that even if the children of survivors do in fact face additional health risks, those risks must be very small.

Jordan attributes the difference between the results of these studies and public perception of the long-term effects of the bombs to a variety of possible factors, including historical context.

“People are always more afraid of new dangers than familiar ones,” said Jordan. “For example, people tend to disregard the dangers of coal, both to people who mine it and to the public exposed to atmospheric pollution. Radiation is also much easier to detect than many chemical hazards. With a handheld geiger counter, you can sensitively detect tiny amounts of radiation that pose no health risk at all.”

Jordan cautions that the results should not be used to foster complacency about the effects of nuclear accidents or the threat of nuclear war. “I used to support nuclear power until Fukushima happened,” he said. “Fukushima showed disasters can occur even in a country like Japan that has strict regulations. However, I think it’s important that the debate be rational, and I would prefer that people look at the scientific data, rather than gross exaggerations of the danger.”

Read the article “Fear of Diagnostic Low-dose Radiation Exposure Is Overstated, Experts Assert.”

For more information: www.genetics.org

Related Content

Mirion Showcases Instadose2 Wireless Dual Detector Dosimeter at AAPM and AHRA
News | Radiation Dose Management | July 15, 2019
Featuring dual detectors, the Instadose2 dosimeter addresses international requirements for independent deep [Hp(10)]...
Example of an intentionally truncated CT image

Figure 1: Example of an intentionally truncated CT image. The truncation percentage was calculated as the ratio of the patient border touching the field of view to the total patient border (red/(read+blue)). Image courtesy of Qaelum.

Feature | Radiation Dose Management | July 15, 2019 | Niki Fitousi, Ph.D., and An Dedulle
One of the main benefits of a radiation dose management system is the possibility to automatically generate alerts when...
Routine scan of abdomen pelvis taken with the UW-Madison’s Revolution 256 CT scanner using the FDA-cleared reconstruction algorithm, called TrueFidelity.

Routine scan of abdomen pelvis taken with the UW-Madison’s Revolution 256 CT scanner using the FDA-cleared reconstruction algorithm, called TrueFidelity. UW-Madison was the first site in the U.S. to get this technology. Its use is now being integrated into UW CT protocols. Image courtesy of Timothy P. Szczykutowicz

Feature | Computed Tomography (CT) | July 12, 2019 | By Greg Freiherr
When providers develop their own imaging protocols, they are wasting time and money, according to...
Fluke Biomedical Introduces RaySafe 452 Survey Meter
Technology | Radiation Dose Management | July 11, 2019
Radiation measurement often requires different devices for varying applications, adding to the cost and complexity of...
Mednax National Cardiac Centers of Excellence Program Highlighted at SCCT 2019
News | CT Angiography (CTA) | July 11, 2019
Mednax Inc. and Mednax Radiology Solutions announced that Chief Medical Officer Ricardo C. Cury, M.D., FSCCT, will...
Achenbach to Receive Inaugural 2019 Stephan Achenbach Pioneer Award in Cardiovascular CT
News | Cardiac Imaging | July 10, 2019
The Society of Cardiovascular Computed Tomography (SCCT) will present Stephan Achenbach, M.D., FSCCT with the inaugural...
Researchers Use Artificial Intelligence to Deliver Personalized Radiation Therapy
News | Radiation Therapy | July 09, 2019
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to...
Radcal Exhibits Accu-Gold Touch Systems at AAPM 2019
News | Radiation Dose Management | July 09, 2019
Radcal Corp. will be presenting the new Accu-Gold Touch platform, a multi-analyzer the company says is the latest in X-...
Jonathon Leipsic Awarded 2019 DeHaan Award for Innovation in Cardiology
News | Cardiac Imaging | July 08, 2019
Jonathon A. Leipsic, M.D., FSCCT, is the recipient of the 2019 DeHaan Award for Innovation in Cardiology, announced by...
vRad Presents AI Model to Assess Probability of Aortic Dissection
News | Artificial Intelligence | July 01, 2019
vRad (Virtual Radiologic), a Mednax company recently made a scientific presentation, “Screening for Aortic Dissection...