News | PET-CT | July 14, 2017

PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Tracer identifies hypoxic areas where increased radiotherapy dose proves beneficial to outcomes

PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET) radiotracer that is widely used to diagnose hypoxia and non-small cell lung cancer (NSCLC) patients with FMISO uptake are known to face a poor prognosis. A multicenter French Phase II study featured in the July issue of The Journal of Nuclear Medicine (JNM) investigated whether a selective radiotherapy (RT) dose increase to tumor areas with significant FMISO uptake in NSCLC patients could improve outcomes.

The study, conducted by 15 academic PET facilities across France, evaluated 54 patients with localized, advanced non-small cell cancers, who were undergoing chemoradiotherapy. For each patient, two FDG-PET/CT (computed tomography) and two FMISO-PET/CT scans were performed using the same machine and under the identical operational conditions. Quality control was centrally supervised to secure homogeneity in the image quality in all participating centers. In 24 of the patients, the radiotherapy dose could be increased up to 86 Gy on hypoxic areas identified on FMISO PET/CT. Unfortunately, this dose increase did not improve patient outcomes.

On the bright side, Pierre Vera, M.D., Ph.D., of the Henri Becquerel Cancer Center and Rouen University Hospital in Rouen, France, noted, "We demonstrate that this approach of radiotherapy boost based on hypoxia PET is feasible in a multicenter setting. Regarding the clinical aspect, a recent randomized trial (Bradley Lancet Oncol 2015) failed to demonstrate the benefit of escalated radiotherapy dose in large target volumes. Our data show that smaller volumes, identified on their functional characteristics using hypoxia PET/CT, can be adequately targeted. In addition, no significant toxicity has been observed in patients receiving radiotherapy boost."

In an invited perspective, also published in the July JNM, Rodney J. Hicks, M.D., FRACP, FAHMS, of the Peter MacCallum Cancer Centre and the University of Melbourne in Melbourne, Australia, points out that negative results are instructive. He stated, "Clearly, hypoxia remains an evil foe in our battle to achieve better outcomes in non-small cell cancer. But by demonstrating its importance, Vera and colleagues pose us the challenge to design new combination therapies. ...[For example,] there may be synergy between radiation and check-point immunotherapy."

For more information: www.jnm.snmjournals.org

Related Content

RayStation Replacing Existing Treatment Planning System at Leeds Cancer Centre
News | Treatment Planning | September 24, 2018
RaySearch recently strengthened its position in the U.K. market with a major order for the treatment planning system...
Turkish Hospital Begins MR-Guided Radiation Therapy With Viewray MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | September 21, 2018
ViewRay Inc. announced that Acibadem Maslak Hospital in Istanbul, Turkey has begun treating patients with ViewRay's...
Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Amar Kishan, M.D.

Amar Kishan, M.D.

News | Prostate Cancer | September 11, 2018
UCLA researchers have discovered that a combination of high doses of...
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
Videos | Radiation Therapy | September 07, 2018
A discussion with Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke University Clinical Imaging Physics Gr
Boston Scientific to Acquire Augmenix Inc.
News | Patient Positioning Radiation Therapy | September 07, 2018
Boston Scientific has entered into a definitive agreement to acquire Augmenix Inc., a privately-held company which has...
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...