News | PET Imaging | November 08, 2023

A biomarker of norepinephrine deficiency in the heart may help to detect Lewy body diseases before symptoms appear 

A biomarker of norepinephrine deficiency in the heart may help to detect Lewy body diseases before symptoms appear

Heart and brain PET scans from a study participant who developed Parkinson’s disease support a “body first” progression. The top pair of PET scans image show low 18F-dopamine-derived radioactivity in the heart (right, with 13N-ammonia PET scan on left). Later, brain scans showed a loss of dopamine-producing neurons and the individual developed symptoms of the disease. Goldstein lab, NINDS 


November 8, 2023 — In a small study, researchers at the National Institutes of Health have found that positron emission tomography (PET) scans of the heart may identify people who will go on to develop Parkinson’s disease or Lewy body dementia among those at-risk for these diseases. The findings, published in the Journal of Clinical Investigation and led by scientists at the National Institute of Neurological Disorders and Stroke (NINDS), part of NIH, may advance efforts to detect the earliest changes that years later lead to Parkinson’s disease and Lewy body dementia. 

In 34 people with Parkinson’s disease risk factors, researchers conducted PET scans of the heart to gain insight into levels of the neurotransmitter norepinephrine. They found that the scans could distinguish individuals who would later be diagnosed with Parkinson’s or Lewy body dementia—both are brain diseases caused by abnormal deposits of the protein alpha-synuclein that form clumps known as Lewy bodies. The research was conducted at the NIH Clinical Center, currently the only location for 18F-dopamine PET scanning. 

Norepinephrine is derived from dopamine, which is deficient in the brains of people with Parkinson’s disease. Earlier work from David S. Goldstein, M.D., Ph.D., NINDS Principal Investigator, demonstrated that people with Lewy body diseases had severe depletion of cardiac norepinephrine, which is normally released by the nerves that supply the heart. 

In the present study, the research team led by Dr. Goldstein found that at-risk individuals with low 18F-dopamine-derived radioactivity in the heart were highly likely to develop Parkinson’s or Lewy body dementia during long-term follow-up, compared to individuals with the same risk factors but with normal radioactivity. PET scans work by using a radioactive tracer to visualize metabolic or biochemical processes in body organs. 

“Imagine the scans are frames of a movie,” Dr. Goldstein said. “The frame at 8 minutes during the first evaluation is already enough to identify the people who are likely to go on to develop a central Lewy body disease years later.” 

In the study, 34 people at risk for Parkinson’s had cardiac 18F-dopamine PET scans every 18 months for up to about 7.5 years or until they were diagnosed with the disease. Participants had three or more Parkinson’s risk factors, which included a family history of the disease; loss of sense of smell, which occurs commonly in Parkinson’s; a sleep disorder in which people act out their dreams, known as dream enactment behavior; and symptoms of orthostatic intolerance, such as light-headedness upon standing. 

Of the nine individuals with low cardiac 18F-dopamine-derived radioactivity at their first scan, eight were diagnosed later with Parkinson’s or Lewy body dementia. Only 1 of 11 participants with normal initial radioactivity developed a central Lewy body disease. All nine participants who developed a Lewy body disease had low radioactivity before or at the time of diagnosis.   

The study supports the view that synuclein disorders such as Parkinson’s disease and Lewy body dementia affect the nerves of the autonomic nervous system, which regulates automatic body processes like heart rate and blood pressure. Work by Dr. Goldstein and others has shown synuclein aggregation occurs in nerves to the gastrointestinal organs, skin, and glands in both these disorders. 

“We think that in many cases of Parkinson’s and dementia with Lewy bodies the disease processes don’t actually begin in the brain. Through autonomic abnormalities the processes eventually make their way to the brain,” Dr. Goldstein said. “The loss of norepinephrine in the heart predicts and precedes the loss of dopamine in the brain in Lewy body diseases.”   

Finding biomarkers that could help detect diseases before symptoms begin, known as the preclinical period, is critical for testing early interventions. The visible motor symptoms of Parkinson’s occur only after substantial damage or loss of dopamine-producing neurons in regions of the brain that control movement. 

“Once symptoms begin, most of the damage has already been done,” said Dr. Goldstein. “You want to be able to detect the disease early on. If you could salvage the dopamine terminals that are sick but not yet dead, then you might be able to prolong the time before the person shows symptoms.”     

Using the PET scans to identify people with preclinical Lewy body diseases could enable testing of preventative approaches such as lifestyle modifications, dietary supplements, or medications. 

NINDS is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease. 

For more information: www.nih.gov 


Related Content

News | PET-CT

July 16, 2024 — A new research paper was published in Oncotarget's Volume 15 on June 20, 2024, titled, “Comparison of ...

Time July 16, 2024
arrow
News | Computed Tomography (CT)

July 15, 2024 — NeuroLogica Corp, a subsidiary of Samsung Electronics Co. Ltd., announced its latest configuration of ...

Time July 15, 2024
arrow
News | Prostate Cancer

July 5, 2024 — Lantheus Holdings, Inc., a leading radiopharmaceutical-focused company committed to enabling clinicians ...

Time July 05, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | ASTRO

June 21, 2024 — The American Society for Radiation Oncology (ASTRO) announced today that following a nationwide search ...

Time June 21, 2024
arrow
News | Nuclear Imaging

June 20, 2024 — GE HealthCare joined the world’s top medical and academic institutions at the Society of Nuclear ...

Time June 20, 2024
arrow
News | Proton Therapy

June 14, 2024 — Atlantic Health System, an integrated health care system setting standards for quality health care in ...

Time June 14, 2024
arrow
News | PET Imaging

June 14, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 14, 2024
arrow
News | SNMMI

June 13, 2024 — The Society of Nuclear Medicine and Molecular Imaging (SNMMI) hosted more than 8,000 physicians ...

Time June 13, 2024
arrow
News | PET-CT

June 13, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 13, 2024
arrow
Subscribe Now