News | December 16, 2009

PET Better Identifies Malignant Breast Tumors

FDG-PET breast cancer patient.

December 17, 2009 - Positron emission tomography (PET) scans used with an agent called 64Cu-TP3805 may significantly contribute to the management of breast cancer, reducing the number of biopsies.

Scientists from the Kimmel Cancer Center at Jefferson have discovered a possible way for malignant breast tumors to be identified, without the need for a biopsy, according to findings published online in the Journal of Nuclear Medicine.

Because current imaging modalities miss up to 30 percent of breast cancers and cannot distinguish malignant tumors from benign tumors, which leads to biopsies, approximately 5.6 million biopsies performed in the United States find only benign lesions.

To better identify malignant tumors, Mathew Thakur, Ph.D., professor of Radiology at Jefferson Medical College of Thomas Jefferson University and director of Radiopharmaceutical Research and Nuclear Medicine Research conducted a study using an imaging agent to target a specific biomarker that visualizes malignant breast lesions early and reliably.

An agent called 64Cu-TP3805, which is used to evaluate tumors via PET imaging. 64Cu-TP3805 detects breast cancer by finding a biomarker called VPAC1, which is overexpressed as the tumor develops.

The researchers compared the images using that agent with images using the "gold standard" imaging agent, 18F-FDG. They used MMTVneu mice, which are mice that develop breast tumors spontaneously, like humans. The mice first received a PET scan using the 18F-FDG. Then they received a CT scan, and then they received another PET scan using 64Cu-TP3805.

Ten tumors were detected on the mice. Four tumors were detected using both 18F-FDG and 64Cu-TP3805, and four additional tumors were found with 64Cu-TP3805 only. All eight of these tumors overexpressed the VPAC1 oncogene on tumor cells and were malignant by histology. The remaining two tumors were benign and were detected only with 18F-FDG. They did not express the VPAC1 oncogene, and thus were not detected by the 64Cu-TP3805.

According to Dr. Thakur, if 64Cu-TP3805 is equally as effective in humans, then he believes PET scans with 64Cu-TP3805 will significantly contribute to the management of breast cancer.

For more information: www.snm.org

Related Content

Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
The MOZART Supra Specimen Tomosynthesis System is the latest generation of 3-D imaging for breast cancer surgery.
News | Breast Imaging | November 08, 2018
KUBTEC announced the launch of a new innovation in the treatment of breast cancer. The Mozart Supra Specimen...
Charles Ananian, M.D.

Charles Ananian, M.D.

Sponsored Content | Case Study | Digital Radiography (DR) | November 07, 2018
Whether it’s a premature baby or a critically ill child, treating little patients is a huge responsibility.
Feature | Breast Imaging | November 07, 2018 | By Jeff Zagoudis
Breast imaging technology has experienced major growth over the last decade or so, and a new report suggests the mark
Feature | PET Imaging | November 07, 2018 | By Greg Freiherr
Positron emission tomography (PET) is getting ready to venture outside oncology, cardiology and mainstream neurology....
Podcast | PET Imaging | November 07, 2018
PET is getting ready to venture outside oncology, cardiology and mainstream neurology.
Results of the vertebrae-based analysis (383 vertebrae in 34 patients) for detection of BME.

Results of the vertebrae-based analysis (383 vertebrae in 34 patients) for detection of BME.

Sponsored Content | Case Study | Computed Tomography (CT) | November 06, 2018
The following is a summary of a study published in the
Philips’ Compressed SENSE technology helps shorten MRI exams by eliminating redundant radiofrequency signals from the acquisition phase. The software reconstructs any missing  information to maintain high image quality. (Images courtesy of Philips/University Hospital Cologne)

Philips’ Compressed SENSE technology helps shorten MRI exams by eliminating redundant radiofrequency signals from the acquisition phase. The software reconstructs any missing information to maintain high image quality. (Images courtesy of Philips/University Hospital Cologne)

Feature | Breast Imaging | November 05, 2018 | By Jeff Zagoudis
The incidence of breast cancer is rising globally, with an estimated 1 in 8 women diagnosed in their lifetime and 40,...