News | Proton Therapy | May 01, 2019

Pencil Beam Scanning Better Protects Children With Brain Tumors

Comparative study finds precise form of proton therapy delivers lowest dose to temporal lobes and hippocampus

Pencil Beam Scanning Better Protects Children With Brain Tumors

May 1, 2019 — A comparison of three types of radiotherapy for children's brain tumors suggests a type of proton therapy called pencil beam scanning (PBS) offers the best hope of preserving cognitive functions. The study, presented at the European Society for Radiotherapy and Oncology (ESTRO) 38 conference April 26-30 in Milan, Italy, shows this new form of radiotherapy delivers the lowest doses of radiation to the temporal lobes and hippocampus, areas of the brain important in functions like memory.

The study was presented by Laura Toussaint, a Ph.D. student at the department of Medical Physics, Aarhus University Hospital, Denmark. She said, "Brain tumors are the second most common type of cancer in children. Survival rates have increased in recent decades and currently 75 percent of children diagnosed with a brain tumor will be alive five years later.

"Alongside surgery and chemotherapy, radiotherapy plays an important role in treating brain tumors in children, but we need to protect children's developing brains from any unnecessary radiation. The more we learn about how to effectively target brain tumors while minimizing the dose to other parts of the brain, the better we can preserve children's cognitive abilities and quality of life after treatment."

Toussaint and her colleagues carried out detailed studies of 10 different children treated for brain tumors. Each child had been diagnosed with a type of cancer called craniopharyngioma, centrally located in their brain.

For each child, they planned treatments with each of the three types of radiotherapy: volumetric modulated arc therapy (VMAT), double scattering proton therapy (DSPT) or PBS proton therapy. All three are advanced radiotherapy treatments but DSPT and PBS are both types of proton therapy, which research suggests is better at targeting the tumor more precisely while sparing the surrounding tissues. However, they require expensive specific equipment that is not yet available in all hospitals. PBS is an especially precise form of radiotherapy that delivers treatment via a very narrow proton beam.

Previous research has shown that radiation doses to particular areas of the brain, including the temporal lobes and hippocampus, have an impact on children's cognitive outcomes, specifically in memory functions. Toussaint and her colleagues used these existing data to select 30 structures in the children's brains to study.

The researchers used computed tomography (CT) and magnetic resonance imaging (MRI) scans to precisely locate the structures in each of the children's brains. Then they compared the three treatment plans for each child to see which type of treatment was better at sparing those 30 structures from radiation, categorizing the dose to each structure as high, medium or low.

They found the doses to the temporal lobe were lower with the PBS treatment, compared to both the DSPT and VMAT treatments.

They found, for example, that 41 percent of the left hippocampus volume was receiving low doses of radiation with the DSPT plans, while being spared with the PBS treatment.

Using the existing data on the impacts of radiation to these regions of the brain, the researchers predict that the proton therapies, particularly the PBS treatment, would result in less impairment of the children's memory function.

Toussaint said, "We have looked at three types of radiotherapy, which all aim to successfully treat brain tumors while doing as little damage to children's brains as possible. What we found was that pencil beam scanning proton therapy seems to be by far the best at avoiding parts of the brain that are important in children's memory. The next step would be to confirm this finding with clinical research in patients.

"The use of proton therapy has been expanding rapidly over the last decade and is becoming more and more available for cancer patients, especially for children. This also means that more research can take place."

There are around 25 proton therapy centers operating in Europe, and another 19 are under construction or planned.

Prof. Umberto Ricardi, president of ESTRO and head of the Department of Oncology at the University of Turin, Italy, who was not involved in the research, said, "The aim of radiotherapy is to effectively treat cancer while causing as little damage as possible to the rest of the body. This aim could not be more important than when we are treating children's brains. Proton therapy is already being used in some hospitals to treat brain tumors in children, but this study offers evidence of the benefits it might bring in terms of protecting cognitive functions and quality of life. We hope this work will lead to more research in this vital area."

For more information: www.estro.org

Related Content

VIDEO: Advancements in Radiation Therapy for Brain Cancer

Hippocampal Sparing Prevents Whole-Brain Radiotherapy Cognitive Side Effects

Advances in Neuro-oncology

Related Content

IBA Gathers Experts on Flash Irradiation During ASTRO
News | Proton Therapy | September 17, 2019
IBA (Ion Beam Applications SA, held its third Victoria Consortium Meeting focusing on Flash irradiation at the 2019...
Noninvasive Radioablation Offers Long-term Benefits to High-risk Heart Arrhythmia Patients
News | Radiation Therapy | September 17, 2019
September 17, 2019 — Treating high-risk heart patients with a single, high dose of...
Sun Nuclear Presents Portfolio of Independent Radiotherapy QA Solutions at ASTRO 2019

The PlanCheck module now part of SunCheck, automates plan quality checks, validates treatment plans against requirements, and automatically assesses plan performance versus intent.

News | Quality Assurance (QA) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) Annual Meeting, running Sept. 15-18 in Chicago, Sun Nuclear...
Varian Unveils Ethos Solution for Adaptive Radiation Therapy
News | Image Guided Radiation Therapy (IGRT) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, being held Sept. 15-18 in Chicago, Varian...
Long-term Hormone Therapy Increases Mortality Risk for Low-PSA Men After Prostate Surgery
News | Prostate Cancer | September 16, 2019
Secondary analysis of a recent clinical trial that changed the standard of care for men with recurring prostate cancer...
The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning

The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning. Image courtesy of Siemens Healthineers.

News | Computed Tomography (CT) | September 15, 2019
Siemens Healthineers debuted two computed tomography (CT) systems dedicated to radiation therapy (RT) planning at the...
Isoray to Spotlight Cesium-131 Advances at ASTRO Annual Meeting
News | Brachytherapy Systems | September 13, 2019
Isoray Inc. announced it will spotlight the growing cancer treatment applications of Cesium-131 brachytherapy at the...
Akesis Galaxy SRS System Receives FDA 510(k) Clearance
Technology | Radiation Therapy | September 13, 2019
The Akesis Galaxy, a gamma stereotactic radiosurgery system (SRS) with continuous 360-degree rotational technology, has...
Philips Showcases Integrated Radiation Oncology Portfolio at ASTRO 2019
News | Radiation Oncology | September 13, 2019
Philips will showcase its integrated radiation oncology portfolio at the American Society of Radiation Oncology (ASTRO...
RefleXion Highlights Novel Approach to Radiotherapy at ASTRO 2019

The RefleXion X1 Machine without the Gantry Cover. The patented technology incorporates PET imaging data, which enables tumors to continuously signal their location. Image courtesy of Reflexion Medical.

News | Radiation Therapy | September 12, 2019
Therapeutic oncology company RefleXion Medical announced it will showcase the RefleXion X1 Machine at the American...