News | Radiation Therapy | October 23, 2018

Hippocampal Sparing Prevents Whole-Brain Radiotherapy Cognitive Side Effects

New study presented at ASTRO provides practice-changing evidence

Hippocampal Sparing Prevents Whole-Brain Radiotherapy Cognitive Side Effects. #ASTRO #ASTRO18 #ASTRO2018

October 23, 2018 — Whole-brain radiotherapy can be delivered more safely to patients with brain metastases by avoiding the hippocampus, according to a randomized phase III NRG Oncology trial. Trial results were presented at the American Society for Radiation Oncology (ASTRO) annual meeting, Oct. 21-24 in San Antonio, Texas.

To study the hypothesis that radiation to the hippocampal stem cells plays a role in cognitive decline, 518 patients were randomized to whole-brain radiotherapy plus memantine with or without hippocampal avoidance. The results of the clinical trial found a 26 percent relative reduction in risk of cognitive toxicity following whole-brain radiation therapy with hippocampal avoidance versus whole brain radiotherapy. The cognitive function benefit of hippocampal avoidance did not differ by age.

“This study demonstrates that we can deliver whole brain radiotherapy with similar cognitive outcomes as radiosurgery,” said lead author and co-principal investigator of the phase III trial Vinai Gondi, M.D., director of research at the Northwestern Medicine Chicago Proton Center and co-director of the Brain Tumor Center at Northwestern Medicine Cancer Center Warrenville. “These trial results revolutionize our understanding of the cognitive effects of brain irradiation in a manner that has far-reaching implications in terms of the safer radiotherapy treatment of primary or metastatic brain tumors.”

Brain metastases, cancer cells that have spread to the brain from primary tumors in other organs, is one of the most common cancer conditions managed by radiation oncologists. Due to concerns about cognitive decline, whole-brain radiotherapy is currently often the last resort, even though it is one of the most effective treatments for brain metastases.

“This hippocampal-sparing approach reduces both the risk of growth of new brain metastases and the risk of cognitive decline, and no prior study has ever demonstrated this dual effect,” added Walter J. Curran, M.D., executive director of the Winship Cancer Institute at Emory University and an NRG Oncology Group Chair.

By establishing that the hippocampal region is sensitive to radiation, treatment plans for brain metastases or other brain tumors can employ advanced techniques such as intensity-modulated radiation therapy (IMRT) or proton therapy to reduce dose to the hippocampus and offer brain therapy with less toxicity.

“Our phase III trial not only provides evidence for practice-change in the management of brain metastases, but also builds upon decades of preclinical and clinical research to definitely establish the hippocampus as a radiosensitive and cognition-specific organ at risk during brain irradiation,” said Gondi.

Read the study abstract here.

Read more about the Late-breaking Radiation Therapy Clinical Trials at ASTRO 2018.
 

For more information: www.astro.org

Related Content

New Study Evaluates Head CT Examinations and Patient Complexity
News | Neuro Imaging | May 17, 2019
Computed tomography (CT) of the head uses special X-ray equipment to help assess head injuries, dizziness and other...
New Phase 2B Trial Exploring Target-Specific Myocardial Ischemia Imaging Agent
News | Radiopharmaceuticals and Tracers | May 17, 2019
Biopharmaceutical company CellPoint plans to begin patient recruitment for its Phase 2b cardiovascular imaging study in...
Managing Architectural Distortion on Mammography Based on MR Enhancement
News | Mammography | May 15, 2019
High negative predictive values (NPV) in mammography architectural distortion (AD) without ultrasonographic (US)...
New Method Improves Ability to Measure and Maximize Radiation Therapy Dose
News | Radiation Therapy | May 14, 2019
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime....
Icon Launches New Clinical Trial Patient Engagement Platform
Technology | Patient Engagement | May 14, 2019
Icon plc announced the release of its web-based clinical trial patient engagement platform, to provide patients with...
Sponsored Content | Videos | Radiation Oncology | May 13, 2019
At ASTRO 2018, Accuray showcased new patient-fi
Radiotherapy After Chemo May Improve Survival in Advanced Hodgkin's Lymphoma Patients
News | Radiation Therapy | May 10, 2019
Patients with advanced Hodgkin's lymphoma who have large tumors at the time of diagnosis may benefit from radiotherapy...
IBA Partnering to Develop Advanced Digital Proton Therapy Technologies in Belgium
News | Proton Therapy | May 10, 2019
IBA (Ion Beam Applications SA) announced a research agreement with Skandionkliniken, Université Catholique de Louvain...
A CyberHeart cardiac ablation radiotherapy treatment plan showing where the radiation beam will ablate for a noninvasive pulmonary vein isolation procedure. Varian acquires, buys, purchases Cyberheart.

A CyberHeart cardiac ablation radiotherapy treatment plan showing where the radiation beams will ablate for a noninvasive pulmonary vein isolation procedure to treat an arrhythmia.

Feature | Radiation Therapy | May 10, 2019
May 10, 2019 — Radiation oncology vendor Varian announced it acquired the start-up company CyberHeart, which has deve
Screening MRI Detects BI-RADS 3 Breast Cancer in High-risk Patients
News | MRI Breast | May 09, 2019
When appropriate, short-interval follow-up magnetic resonance imaging (MRI) can be used to identify early-stage breast...