News | September 28, 2012

Optical Mammography Sheds New Light on Breast Cancer

tufts university optical imaging breast cancer mammography

New optical imaging technology developed at Tufts University School of Engineering could give doctors new ways to both identify breast cancer and monitor individual patients' response to initial treatment of the disease. Because it does not use ionizing radiation, the technique can be applied multiple times over a short period without risk of radiation exposure.

September 28, 2012 — New optical imaging technology developed at Tufts University School of Engineering could give doctors new ways to both identify breast cancer and monitor individual patients' response to initial treatment of the disease. A five-year clinical study of the procedure, funded by a $3.5 million grant from the National Institutes of Health, is now underway at Tufts Medical Center in Boston.

The noninvasive technology uses near infrared (NIR) light to scan breast tissue, then applies an algorithm to interpret that information. Differences in light absorption allow identification of water, fats, and oxygen-rich and oxygen-poor tissue, the primary structures in breast tissue.

"The consensus is that X-ray mammography is very good at detecting lesions, but it's not as good at determining which suspicious lesions are really cancer," said Sergio Fantini, Ph.D., professor of biomedical engineering, who is leading the research effort. The Tufts NIR technique could complement standard mammography, particularly for women younger than 40 who may have dense breast tissue that tends to obscure detail in X-rays.

Because it does not use ionizing radiation, the NIR technique can be applied multiple times over a short period without risk of radiation exposure, Fantini notes. Another advantage of the technology is that, unlike other breast imaging methods, it can obtain functional real-time images of metabolic changes, such as levels of hemoglobin concentration and oxygenation.

"It's been reported that patients who respond to breast cancer chemotherapy show a decrease in hemoglobin and water concentration and an increase in lipid concentration at the cancer site," explained Fantini. "This suggests that NIR imaging can be valuable not only in diagnosing breast cancer, but in monitoring individual response to therapies without requiring repeated X-rays. For example, it could help determine if a patient is responding to neoadjuvant chemotherapy administered to shrink a tumor before surgery."

Optical mammography is also more comfortable than traditional mammograms. The patient's breasts are only lightly compressed between two horizontal glass panels and then illuminated by NIR light. A specialized software program displays real-time images of the breast as the optical system scans back and forth. A light detector within the system displays the intensity of the NIR beam as it is transmitted through the breast.

By using an algorithm based on the optical information, the technology generates breast images using the intensity of the transmitted light. The images are displayed automatically and can be read soon after the procedure, as is the case with X-ray mammograms. The technology can be packaged into compact, portable and handheld devices.

Clinical Testing
In collaboration with Roger Graham, M.D., director of Tufts Medical Center's Breast Health Center, and Marc Homer, M.D., chief of mammography at Tufts Medical Center, Fantini and his team conducted "proof of concept" tests to see if their procedure could corroborate information gathered with X-rays on two patients who each had suspicious lesions in one of their breasts.

The optical imaging was successful in enabling the team to identify cancerous tissue. "The test results were compatible with what we found in the X-ray mammography," Graham explained. "It was also painless for the patients and eliminated radiation exposure."

The team also includes Eric Miller, Ph.D., professor and chair of electrical and computer engineering, and Misha Kilmer, Ph.D., professor of mathematics within the School of Arts and Sciences.

The NIH-funded study will investigate healthy women, women with breast cancer and women with benign breast lesions in an effort to examine the effectiveness of optical mammography in detecting breast cancer and distinguishing between malignant and benign tumors. The study will also look at breast cancer patients who are undergoing chemotherapy in order to characterize the power of optical mammography to determine patient response at the beginning of therapeutic treatment.

For more information: http://ase.tufts.edu/biomedical/research/fantini/publications/opticalMam...

Related Content

Videos | Breast Imaging | April 18, 2019
In a keynote lecture at the Society of Breast Imaging (SBI)/American College of Radiology (ACR) 2019 Symposium, ...
Fatty tissue and breast density may be considered in the context of many factors that affect the occurrence and detection of breast cancer

Fatty tissue and breast density may be considered in the context of many factors that affect the occurrence and detection of breast cancer. Permission to publish provided by DenseBreast-info.org

Feature | Breast Imaging | April 18, 2019 | By Greg Freiherr
When planning a screening program to detect the early signs of breast cancer, age is a major consideration.
compressed breast during mammography.
360 Photos | 360 View Photos | April 16, 2019
A 360 view of a simulated breast compression for a...
iCAD Highlighting ProFound AI for Tomosynthesis at 2019 SBI Annual Symposium
News | Computer-Aided Detection Software | April 04, 2019
iCAD announced it will present its latest artificial intelligence (AI) software solution for digital breast...
Ikonopedia Introduces Automated Combined Reporting Package at SBI
News | Mammography Reporting Software | April 04, 2019
Ikonopedia will introduce its new Automated Combined Reporting package at the 2019 Society of Breast Imaging/American...
Konica Minolta Highlights New Exa Mammo Features at SBI/ACR Breast Imaging Symposium
News | Breast Imaging | April 03, 2019
Konica Minolta Healthcare Americas Inc. will highlight new features of Exa Mammo, a picture archiving and communication...
A smart algorithm developed by iCAD

A smart algorithm developed by iCAD outlines and scores a suspicious lesion seen in an image created using digital breast tomography. Displayed is the probability calculated by the algorithm that the outlined area includes a cancerous lesion. Image courtesy of Emily Conant, M.D.

Feature | Artificial Intelligence | April 03, 2019 | Greg Freiherr
  Editor's Note: This article was updated following the SBI symposium.  
Lunit Showcases AI Solution for Breast Cancer at SBI 2019
News | Artificial Intelligence | April 02, 2019
Medical artificial intelligence (AI) startup Lunit announced its attendance at the Society of Breast Imaging (SBI) 2019...