News | Cardiac Imaging | September 14, 2020

Ohio State Study Shows Cardiac MRI Effective in Identifying Myocarditis in Athletes

 A cardiac MRI is effective in identifying inflammation of the heart muscle in athletes and can help determine when those who have recovered from COVID-19 can safely return to play in competitive sports, according to a new study by researchers at The Ohio State University Wexner Medical Center.

Getty Images

September 14, 2020 — A cardiac MRI is effective in identifying inflammation of the heart muscle in athletes and can help determine when those who have recovered from COVID-19 can safely return to play in competitive sports, according to a new study by researchers at The Ohio State University Wexner Medical Center. The research is published online in JAMA Cardiology.

Ohio State researchers examined 26 COVID-19 positive male and female competitive college athletes for signs of myocarditis, a rare disease that can cause heart failure and sudden cardiac death. Most cases of myocarditis, which is usually caused by a viral infection, happen in young adults with males affected more than females. Recent studies have shown myocardial inflammation in patients who recovered from COVID-19. Twelve of the athletes studied by Ohio State researchers reported mild symptoms of COVID-19 and the rest were asymptomatic.

Recently published protocols recommend the use of a combination of clinical examination, echocardiogram (an ultrasound), electrocardiogram (records a heartbeat) and a blood test to help with diagnosis of myocarditis in athletes prior to return to competitive play. The Ohio State researchers used all of these methods as well as cardiac magnetic resonance (CMR) imaging, which they found to be effective in identifying myocardial inflammation not picked up by other methods.

“This is the first study to systematically investigate the use of CMR imaging in competitive athletes recovered from COVID-19 infection. CMR has the potential to identify a high-risk group for adverse outcomes and may, importantly, risk stratify athletes for safe participation, as CMR mapping techniques have a high negative predictive value to rule out myocarditis,” said Saurabh Rajpal, M.D., a cardiologist and an assistant professor in the Division of Cardiovascular Medicine at The Ohio State University College of Medicine, who led the study.

In the study, four athletes (15%) were shown to possibly have myocarditis by MRI criteria. In addition to these four, eight others had evidence of scar tissue, suggesting either prior myocardial injury or normal athletic adaptation of the heart.

“It’s not known what caused the scar tissue in those eight, or if it was related to having COVID-19,” Rajpal said. “Additionally, the CMR imaging ruled out myocarditis for all athletes without MRI evidence of inflammation, allowing them to return to playing sports.”

Myocarditis can happen to anyone, not just athletes.

"The public should be aware of these findings and know the symptoms of heart disease with COVID-19 infection. As people begin to exercise after recovering from the virus, any chest pain, shortness of breath or abnormal heart beats should be evaluated by a doctor," said Curt Daniels, M.D., co-author, cardiologist and professor at Ohio State Wexner Medical Center. 

The study’s authors recommend more research on CMR screening, including long-term follow-ups with athletes and control populations.

Related Content

A cardiac MRI of athletes who had COVID-19 is seven times more effective in detecting inflammation of the heart than symptom-based testing, according to a study led by researchers at The Ohio State University Wexner Medical Center and College of Medicine with 12 other Big Ten programs.

Cardiac Magnetic Resonance Imaging in Athletes With Clinical and Subclinical Myocarditis A-D, Athlete A with subclinical possible myocarditis was asymptomatic with normal electrocardiogram (ECG), echocardiogram, and high-sensitivity troponin findings. A, T2 mapping showing elevated T2 in basal-mid inferolateral wall in short axis view. B, late gadolinium enhancement (LGE) in the basal inferolateral wall in short axis view. C, Postcontrast steady state-free precession (SSFP) images showing contrast uptake in the basal-mid inferolateral wall in short axis view. D, LGE in the inferolateral wall in 3-chamber view. E-H, Athlete B with subclinical probable myocarditis was asymptomatic with normal ECG, normal echocardiogram, and elevated high-sensitivity troponin findings. E, T2 mapping showing elevated T2 in the anteroseptal wall in short axis view. F, LGE in the anteroseptal wall in 3-chamber view. G, T2 mapping showing elevated T2 in the anteroseptal wall in 3-chamber view. F, Postcontrast SSFP image showing pericardial effusion in short axis view. I-K, Athlete C with clinical myocarditis and chest pain, dyspnea, abnormal ECG, normal echocardiogram, and normal troponin findings. I, T2 mapping showing elevated T2 in the lateral wall short axis view. J, Postcontrast SSFP images showing contrast uptake in midlateral wall in short axis view. K, LGE in the epicardial midlateral wall in short axis view. L-N, Athlete D with clinical myocarditis, chest pain, abnormal ECG, echocardiogram, and troponin findings. L, T1 mapping showing elevated native T1 in midlateral wall in short axis view. M, T2 mapping showing elevated T2 in the midlateral wall in short axis view. N, LGE in the epicardial midlateral wall in short axis view. IR indicates inferior right view; IRP, inferior, right, posterior view; PLI, posterior, left, inferior view; SL, superior left view; SLA, superior, left, anterior view. Image courtesy of JAMA Cardiol. Published online May 27, 2021. doi:10.1001/jamacardio.2021.2065

News | Cardiac Imaging | June 15, 2021
June 15, 2021 — A...
Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT
News | Computed Tomography (CT) | June 14, 2021
June 14, 2021 — Heart disease and cancer are the ...
A new imaging technique has the potential to detect neurological disorders — such as Alzheimer's disease — at their earliest stages, enabling physicians to diagnose and treat patients more quickly. Termed super-resolution, the imaging methodology combines position emission tomography (PET) with an external motion tracking device to create highly detailed images of the brain.

Result of the Hoffman brain phantom study. Top row: same PET slice reconstructed with A) 2mm static OSEM, B) 1mm static OSEM, C) proposed SR method and D) corresponding CT slice (note that the CT image can be treated as a high-resolution reference). Middle row: zoom on region of interest for corresponding images. Bottom row: Line profiles for corresponding data. Image created by Y Chemli, et al., Gordon Center for Medical Imaging: Department of Radiology Massachusetts General Hospital, Harvard Medical School, Boston, MA.

News | PET Imaging | June 14, 2021
June 14, 2021 — A new imaging technique has the potential to detect neurological disorders — such as...
Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

News | SPECT Imaging | June 14, 2021
June 14, 2021 — An advanced artificial i...
Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...
The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

News | X-Ray | June 10, 2021
June 10, 2021 — Engineers at Duke University have demonstrated a prot
News | PET-CT | June 10, 2021
June 10, 2021 — Bringing the power of...
Richard Ernst was considered the father of nuclear magnetic resonance imaging (MRI)
News | Magnetic Resonance Imaging (MRI) | June 10, 2021
June 10, 2021 — The Washington Post has reported that Richard R.