News | Artificial Intelligence | March 25, 2019

NVIDIA Launches Clara AI Toolkit for Algorithm Development

System helps radiologists deliver AI-assisted annotation, adapt AI for their patients and deploy it in the hospital

NVIDIA Launches Clara AI Toolkit for Algorithm Development

March 25, 2019 — NVIDIA introduced Clara AI, a toolkit that includes 13 classification and segmentation artificial intelligence (AI) segmentation algorithms, and software tools built for radiologists.

Labeled data is critical to build safe and robust AI, but radiologists’ time is too precious to spend hours labeling datasets. The Clara AI assisted annotation capability speeds up the creation of structured datasets, enabling annotations in minutes instead of hours. The toolkit facilitates the integration of AI models into existing radiology workflows using industry standards like DICOM.

Transfer learning, another capability in the Clara AI toolkit, adapts existing models to fit local variables. It customizes deep learning algorithms to data that includes local demographics and imaging devices, without having to move or share patient data. As a result, doctors can create models for their own patients with 10 times less data than starting from scratch.

NVIDIA noted that several institutions are already using Clara AI, including:

  • The Ohio State University radiologists quickly incorporated a model developed at another institution, validated it and annotated a local dataset to adapt the model to OSU patients. This enables faster AI development of effective algorithms which support clinical care.
  • The National Institutes of Health Clinical Center and NVIDIA scientists used Clara AI to develop a domain generalization method for the segmentation of the prostate from surrounding tissue on magnetic resonance imaging (MRI). The localized model achieved performance similar to that of a radiologist and outperformed other state-of-the-art algorithms that were trained and evaluated on data from the same domain.
  • The University of California San Francisco (UCSF) is using a Clara AI-powered scalable infrastructure that will enable the seamless creation, testing and deployment of multiple AI algorithms across radiology, serving as a pathway for future doctors to adopt the system.

“We have an incredibly innovative group of researchers who are building clinically valuable AI tools, and need a consistent way to validate and deploy these tools into clinical workflows,” said Christopher Hess, chair of radiology, UCSF. “NVIDIA Clara will be an essential component of the medical imaging AI ecosystem that enables us to develop and deploy our own and external AI models.”

For more information: www.nvidia.com

Related Content

A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for its head CT scan product qER. The US Food and Drug Administration's decision covers four critical abnormalities identified by Qure.ai's emergency room product.
News | Artificial Intelligence | June 30, 2020
June 30, 2020 — Imaging Artificial Intelligence (AI) provider Qure.ai announced its first US FDA 510(k) clearance for
Sponsored Content | Videos | PACS | June 29, 2020
Kevin Borden, Vice President of Product, Healthcare IT for Konica Minolta, talks about Improving Access and Aiding Wo
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Universal digital operating system for surgery enables health tech companies and start-ups to accelerate, scale and grow

Stefan Vilsmeier, President and CEO of Brainlab Photo courtesy of Brainlab

News | Artificial Intelligence | June 26, 2020
June 26, 2020 — ...
n support of Mayo Clinic’s digital health and practice transformation initiatives, the Mayo Clinic Department of Laboratory Medicine and Pathology has initiated an enterprise-wide digital pathology implementation of the Sectra digital slide review and image storage and management system to enable digital pathology. 
News | Enterprise Imaging | June 26, 2020
June 26, 2020 —  In support of Mayo Clinic’s digital health
Visage announces cloud implementation, Visage 7 Workflow and semantic annotations
News | Enterprise Imaging | June 26, 2020
June 26, 2020 — Visage Imaging, Inc.