The workflow of radiomics. Image courtesy of Yixin Wang

The workflow of radiomics. Image courtesy of Yixin Wang 

June 24, 2022 — Recently, a collaborated research team led by Prof. LI Hai and Hongzhi Wang from Hefei Institutes of Physical Science of Chinese Academy of Sciences (CAS) proposed an interpretable radiomic model for predicting radiotherapy treatment response in patients with brain metastases

The results were published in European Radiology

Radiomics refers to extracting high-throughput radiomic features from medical images to assist clinical decision-making. These radiomic features can reflect the biological information of tumors, which cannot be obtained directly through conventional image interpretation. Therefore, machine learning-based methods can rely on in-depth data mining to obtain additional knowledge about tumor heterogeneity. Currently, there is no accurate prediction model of radiotherapy treatment response for patients with brain metastases in clinical practice. 

In this research, the team proposed an interpretable radiomic model for predicting radiotherapy treatment response in patients with brain metastases by combining radiomics and SHAP methods to solve this clinical problem. 

Yixin Wang, the first author of the paper, explained how they finished the whole process. At first, the research team extracted the radiomic features from the magnetic resonance imaging (MRI) images of patients with brain metastases before radiotherapy. Then they used the machine learning method to build the radiomic model. In the end, they explained the model using the game theory-based SHAP, which is helpful for the formulation of precise radiotherapy for patients with brain metastases. 

The model had good performance, and the prediction results in the external validation group also showed that the model can be generalizability. At the same time, the SHAP method could realize the interpretability and visualization of the model and avoid the "black box" effect of traditional machine learning algorithms, which was beneficial for clinicians to understand the model and promote the use of the model. 

This work was supported by the Key Research and Development Program of Anhui Province, the Collaborative Innovation Cultivation Fund of Hefei, Big Science Center of CAS, and the Key Clinical Cultivation Specialty of Hefei Cancer Hospital of CAS. 

For more information: 

Related Brain Metastases Content: 

PET Imaging Adds Valuable Information to Brain Metastasis Monitoring 

Blue Earth Diagnostics Announces Dosing of Initial Patient in Phase 3 REVELATE Clinical Trial of 18F-Fluciclovine PET Imaging for Detection of Recurrent Brain Metastases 

Radiosurgery Reduces Cognitive Decline Without Compromising Survival for Patients with 4+ Brain Metastases 

ASTRO Issues Clinical Guideline on Radiation Therapy for Brain Metastases 

Related Content

News | Breast Imaging

March 23, 2023 — Lumicell, Inc., a privately held company focused on innovative fluorescence-guided imaging technologies ...

Time March 24, 2023
News | PET Imaging

March 23, 2023 — Nuclidium announced that the Neuroendocrine Tumors Research Foundation (NETRF) has selected the company ...

Time March 24, 2023
News | Lung Imaging

March 22, 2023 — The Riverain Technologies ClearRead Bone Suppression solution is now available on the Siemens ...

Time March 22, 2023
News | PET-CT

March 21, 2023 — Positron Corporation, a molecular imaging device company that offers PET imaging systems and clinical ...

Time March 21, 2023
News | Radiopharmaceuticals and Tracers

March 20, 2023 — RayzeBio, Inc., a targeted radiopharmaceutical company developing an innovative pipeline against ...

Time March 20, 2023
News | X-Ray

March 20, 2023 — Researchers from UNSW Sydney have developed an algorithm which produces high-resolution modeled images ...

Time March 20, 2023
News | Quality Assurance (QA)

March 16, 2023 — RTsafe, a leading provider of quality assurance products and services in stereotactic radiosurgery ...

Time March 16, 2023
News | Lung Imaging

March 15, 2023 — According to an accepted manuscript published in ARRS’ own American Journal of Roentgenology (AJR) ...

Time March 15, 2023
News | Radiation Oncology

March 14, 2023 — Elekta announced that is has signed a joint venture with China National Pharmaceutical Group Co., Ltd. ...

Time March 14, 2023
News | Digital Pathology

March 13, 2023 — Proscia, a leading provider of digital and computational pathology solutions, today announced that ...

Time March 13, 2023
Subscribe Now