News | PET-CT | January 22, 2018

Novel PET Tracer Clearly Identifies and Tracks Bacterial Lung Infection

PET tracer 18F-FDS effectively tracks the degree of bacterial infection and can better differentiate infection from inflammation than other tracers tested

Novel PET Tracer Clearly Identifies and Tracks Bacterial Lung Infection

Representative PET/CT images of 18F-FDS and 18F-FDG in inflamed mice. Mice were inoculated with dead K. pneumoniae (10^8 CFU/mL). Imaging was performed for days 1, 2, 3 and 4 using 18F-FDG and 18F-FDS. CT images showed clear inflammation on day 2 and day 3 with corresponding high 18F-FDG uptake on PET. No significant uptake of 18F-FDS was detected for any of those 4 days. Credit: J Li et al., University of Louisville School of Medicine, Louisville, Ky.

January 22, 2018 — Researchers at the University of Louisville, Kentucky, have demonstrated that a new radiotracer, 2-18F-fluorodeoxysorbitol (18F-FDS), can identify and track bacterial infection in lungs better than current imaging methods and is able to differentiate bacterial infection from inflammation. The study is the featured basic science article in the January issue of The Journal of Nuclear Medicine.

“Currently, bacterial infections can be diagnosed only after they have become systemic or have caused significant anatomical tissue damage, a stage at which they are challenging to treat owing to the high bacterial burden,” explained Chin K. Ng, Ph.D., at the University of Louisville School of Medicine.

He pointed out, “18F-FDG PET, a widely commercially available imaging agent, is capable of imaging infection, but it cannot distinguish infections from other pathologies such as cancer and inflammation. Therefore, there is a great need to develop imaging agents with high specificity and sensitivity. There are still no specific imaging agents that can differentiate bacterial infection from sterile inflammation at an early stage.”

For this study, mice were inoculated with either live Klebsiella pneumoniae bacteria to induce lung infection, or the dead form of the bacteria to induce inflammation. Half of the mice with the live bacteria were imaged with positron emission tomography (PET)/computed tomography (CT) using either 18F-FDS or 18F-FDG on days 0, 1, 2 and 3 to monitor disease progression post-infection. The other half were screened by bioluminescent imaging, and mice with visible infection were selected for follow-up PET/CT scans with 18F-FDS. For the inflammation group, half the mice were imaged with PET/CT using 18F-FDS and half using 18F-FDG from day 1 to day 4 post-inoculation.

While both 18F-FDS and 18F-FDG effectively tracked the degree of bacterial infection measured by bioluminescent optical imaging, only 18F-FDS was able to differentiate lung infection from lung inflammation.

Ng noted, “Bacterial infection represents a threat to human health, including hospital-acquired, implant-related, and multidrug-resistant infections. 18F-FDS whole-body PET/CT imaging in mice has shown to be a unique imaging technique that could differentiate infection from inflammation. This same technique could potentially be used in patients to identify infection sites and determine the bacterial infection class, so that patients could avoid taking antibiotics that are known to have no effect against specific bacteria.”

He added, “The interpretation of CT appearances of lung disorders can be complex if a differential diagnosis needs to distinguish between inflammation and infection. Thus 18F-FDS PET/CT could be initially used as a follow up after an inconclusive CT diagnosis for suspected bacterial lung infection. As proven clinical data accumulate over time, 18F-FDS PET/CT could become a new clinical standard for confirming bacterial infection in the lungs or other sites.”

Looking ahead to making 18F-FDS clinically available, Ng stated, “Since 18F-FDS can be made from 18F-FDG with one extra, simple conversion step, and sorbitol has already been approved for use in humans by the U.S. Food and Drug Administration, the approval pathway for 18F-FDS should be straightforward. 18F-FDS would be inexpensive and readily available once approved.”

He also observed, “This and other new PET imaging agents demonstrate that molecular imaging and nuclear medicine can offer unique technologies for patient care and will continue to play a key influential role in healthcare.”

For more information: www.jnm.snmjournals.org

 

Related Content

Novel PET Agent Could Help Guide Therapy for Brain Diseases

Rat brain 11C‐Me‐NB1 PET images (0‐60 min) superimposed on an MRI template. Credit: SD Krämer et al., ETH Zurich, Zurich, Switzerland

News | PET Imaging | April 10, 2018
Researchers have developed a new imaging agent that could help guide and assess treatments for people with various...
The Chalk River nuclear reactor license has been renewed, but will be decommissioned by 2028.

The Chalk River nuclear isotope reactor license has been renewed, but will be decommissioned by 2028. The reactor supplies about 50 percent of the world's supply of Tc99m.

Feature | Nuclear Imaging | April 02, 2018 | Dave Fornell
April 2, 2018 – The Canadian Nuclear Safety Commission (CNSC) announced March 29 that it renewed Canadian Nuclear Lab
Imaging agent helps predict success of lung cancer therapy
News | Oncology Diagnostics | March 08, 2018
March 8, 2018 – Doctors contemplating the best therapy for...
The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain.

This figure shows two different brains that are aligned to a common template space for comparison. The yellow in the anterolateral entorhinal cortex of the young brain indicates significant activity, something that is absent in the older brain. CREDIT: Zachariah Reagh

News | Nuclear Imaging | March 08, 2018
As we get older, it's not uncommon to experience "senior moments," in which we forget where we parked our car or call...
In scans of a 62-yr-old man with Gleason 4+3 PCa treated with radical prostatectomy, with rising PSA level (1.32) and PSA doubling time of 3.7 months, 64CuCl2-PET/CT images revealed 2 positive small left iliac lymph nodes (A,C), whereas 18F-Choline PET/CT (B,D) was negative (arrows).

In scans of a 62-yr-old man with Gleason 4+3 PCa treated with radical prostatectomy, with rising PSA level (1.32) and PSA doubling time of 3.7 months, 64CuCl2-PET/CT images revealed 2 positive small left iliac lymph nodes (A,C), whereas 18F-Choline PET/CT (B,D) was negative (arrows). Image courtesy of A Piccardo et al., Galliera Hospital, Genoa, Italy.

News | Prostate Cancer | March 07, 2018
An Italian study featured in the March i
Axumin PET Agent Added to NCCN Guidelines for Suspected Recurrent Prostate Cancer
News | PET Imaging | February 21, 2018
Blue Earth Diagnostics announced that Axumin (fluciclovine F 18) injection has been added to the National Comprehensive...
Radiography Education Enrollment Shows Marginal Rise in 2017
News | Radiology Business | February 15, 2018
Directors of radiography educational programs report the number of enrolled students increased slightly in 2017, while...
A Tc99m SPECT cardiac exam showing myocardial perfusion in the heart.

Technetium-99m is primarily used for the detection of cancer and to assess perfusion defects in the heart caused by heart attacks or other conditions.

Feature | Radiopharmaceuticals and Tracers | February 08, 2018 | Dave Fornell
February 8, 2018 — The U.S.
PSMA PET-CT Clearly Differentiates Prostate Cancer from Benign Tissue

68Ga-PSMA PET/CT images showing multifocal PCA in peripheral zone with GS of 5 1 5 5 10. (A and C) Axial PET images. (B and D) Fused PET/CT images. SUVmax of lesion in B was 84.3 and that of lesion in D was 5.7. IRS was 3, and 80% of cells were stained. Credit: Senior author V Prasad, Charité Universitätsmedizin Berlin, Berlin, Germany.

News | PET-CT | February 05, 2018
February 5, 2018 — Using nuclear medicine...
Brain-scan guided emergency stroke treatment can save more lives
News | Neuro Imaging | January 25, 2018
January 25, 2018 – Advances in brain imagin...
Overlay Init