News | Breast Density | July 02, 2018

Norwegian Study Confirms Higher Cancer Rate in Women with Dense Breast Tissue

Study supports value of automated breast density measurement as future standard for breast cancer screening

Norwegian Study Confirms Higher Cancer Rate in Women with Dense Breast Tissue

July 2, 2018 — A large Norwegian study using automated breast density measurements found that women with mammographically dense breast tissue have higher recall and biopsy rates, and increased odds of screen-detected and interval breast cancer. The study, published online in the journal Radiology, supports automated measurements as a future standard to ensure objective breast density classification for breast cancer screening, the researchers said.

Previous studies have shown that women with mammographically dense breasts face a higher risk of breast cancer and missed cancers than those with non-dense breasts, partly because the superimposition of dense breast tissue on mammograms leads to a masking effect, causing some cancers to go undetected. However, the majority of those studies relied on subjective density assessments — most commonly, the radiologist’s subjective interpretation using the American College of Radiology’s Breast Imaging Reporting and Data System (BI-RADS). This approach introduces potential mammogram reader variability into density categorization, said the study’s principal investigator, Solveig Hofvind, Ph.D., from the Cancer Registry of Norway in Oslo.

For the new study, Hofvind and colleagues used automated software to help classify mammographic density in 107,949 women ages 50 to 69 from BreastScreen Norway, a national program that offers women screening every two years. The researchers looked at a total of 307,015 digital screening examinations that took place from 2007 to 2015.

The automated software classified breasts as dense in 28 percent of the screening examinations. Rates of screen-detected cancer were 6.7 per 1,000 examinations for women with dense breast tissue and 5.5 for women with non-dense breasts. Interval breast cancer, or breast cancer detected between screenings — usually by palpation — was 2.8 per 1,000 in the dense breast tissue group and 1.2 for women with non-dense tissue.

The recall rate, or rate at which women are called back for additional examination based on suspicious mammographic findings, was 3.6 percent for women with dense breasts, compared with 2.7 percent in women with non-dense breasts. The biopsy rate of 1.4 percent in the dense breasts group was higher than the 1.1 percent rate for women in the non-dense category.

“The odds of screen-detected and interval breast cancer were substantially higher for women with mammographically dense versus fatty breasts in BreastScreen Norway,” Hofvind said. “We also found substantially higher rates of recalls and biopsies among women with mammographically dense breast tissue.”

Mammographic sensitivity for detecting breast cancer was only 71 percent for women with dense breasts, compared to 82 percent for women with non-dense breasts. Cancers detected at screening were more advanced among women in the dense breast tissue group. Average tumor diameter for screen-detected cancers was 16.6 millimeters (mm) in the dense breasts group, compared to 15.1 mm for the non-dense group. Lymph-node-positive disease was found in 24 percent of women with dense breasts, compared with 18 percent for women with non-dense breasts.

The results add another piece to the puzzle of screening protocols for women with dense breasts. Hofvind noted that more than half of states in the U.S. have enacted breast density legislation, with some states requiring that women be informed about their breast density or that additional breast imaging could be beneficial. However, supplemental screening for women with dense breasts currently is not recommended by any of the major healthcare societies or organizations, and more research is needed before widespread changes are made.

“We need well-planned and high-quality studies that can give evidence about the cost-effectiveness of more frequent screening, other screening tools such as tomosynthesis and/or the use of additional screening tools like MRI [magnetic resonance imaging] and ultrasound for women with dense breasts,” she said. “Further, we need studies on automated measurement tools for mammographic density to ensure their validity.”

In the meantime, Hofvind said, the findings will help inform how automated volumetric density categorization will change population-based screening performance and outcomes through a more objective breast density measurement method.

In an accompanying editorial, “Machine Detection of High Breast Density: Worse Outcomes for Our Patients,” Liane E. Philpotts, M.D., FACR, from Yale School of Medicine wrote, “This study is important for two main reasons: (1) the validation that automated means of density classification can correctly identify a percentage of women with dense tissue, and (2) women with dense tissue have poorer performance of screening mammography. It lends support to the density notification movement along with redoubling efforts towards optimizing supplemental screening methods.”

She added that automated volumetric determination could better standardize density measurements and provide greater confidence that women with dense breast tissue could consistently be identified.

“Breast density is here to stay, and it is in everyone’s best interest to embrace understanding and optimization of breast imaging practice to best address the needs of women with dense tissue,” she concluded.

For more information: www.pubs.rsna.org/journal/radiology

Reference

Hofvind S., Moshina N., Sebuødegård S., et al. "Automated Volumetric Analysis of Mammographic Density in a Screening Setting: Worse Outcomes for Women with Dense Breasts," Radiology. June 26, 2018. https://doi.org/10.1148/radiol.2018172972

Related Content

RSNA Study Shows Real-Time Indicator Improves Mammographic Compression
News | Mammography | December 12, 2018
Sigmascreening recently announced that more than 100,000 women have had mammography exams with the Sensitive Sigma...
Massachusetts Superior Court Grants Hologic Preliminary Injunction in Trade Secrets Lawsuits
News | Mammography | December 12, 2018
December 12, 2018 — A Massachusetts Superior Court granted a preliminary injunction in lawsuits by Hologic against Ch
Videos | Mammography | December 10, 2018
Stamatia Destounis, M.D., FACR, associate professor, University of Rochester School of Medicine, and attending radiol
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
FDA Clears iCAD's ProFound AI for Digital Breast Tomosynthesis
Technology | Mammography | December 07, 2018
iCAD Inc. announced clearance by the U.S. Food and Drug Administration (FDA) for their latest, deep-learning, cancer...
YITU Releases AI-Based Cancer Screening Solutions at RSNA 2018
News | Artificial Intelligence | December 06, 2018
Chinese artificial intelligence (AI) healthcare company YITU healthcare released two brand-new products, Intelligent...
Fujifilm Collaborates With Lunit on AI Pilot Project
News | Artificial Intelligence | December 05, 2018
Fujifilm Medical Systems USA Inc. announced a joint collaboration with Korean-based medical artificial intelligence (AI...
ScreenPoint Medical and Volpara Partner to Bring AI to Breast Imaging Clinics
News | Computer-Aided Detection Software | December 04, 2018
ScreenPoint Medical has signed a memorandum of understanding (MOU) with Volpara Health Technologies. Volpara will...
GE Healthcare Introduces Invenia ABUS 2.0
Technology | Ultrasound Women's Health | December 03, 2018
GE Healthcare recently launched the Invenia automated breast ultrasound (ABUS) 2.0 system in the United States. This...
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...