News | May 21, 2012

NIH $2.6 Million Grant Used to Study Imaging Prostate Cancer Without Biopsy

May 21, 2012 — The Kimmel Cancer Center and the Department of Radiology at Thomas Jefferson University in Pennsylvania has received a five-year, $2.6 million grant from the National Institutes of Health (NIH). The grant will support investigations of a potentially revolutionary method that can stage prostate cancers and detect recurrent disease more accurately, significantly reducing the number of confirmation biopsies; such biopsies can be invasive, costly and often lead to false-positive readings.

The new technique involves the use of a positron emission tomography (PET) scan and a novel imaging agent. The study is being led by Mathew Thakur, Ph.D., professor of radiology at Jefferson Medical College of Thomas Jefferson University and the director of the Laboratories of Radiopharmaceutical Research and Molecular Imaging.

Prostate specific antigen (PSA) measurements, ultrasonography and magnetic resonance imaging (MRI) remain standard tools for diagnosis and management of prostate cancer; however, each requires an invasive biopsy for histologic confirmation. Biopsies are associated with morbidity and high costs, and more than 65 percent of the 1.5 million biopsies performed each year in the United States show benign pathology, indicating a high false-positive rate for these standard diagnostic tools.

These limitations, the researchers say, demonstrate a dire need for noninvasive methods that can accurately stage prostate cancer, detect recurrent disease and image metastatic lesions with improved reliability.

Thakur and his colleagues are studying Cu-64 peptide biomolecules to evaluate prostate cancer tumors via PET imaging. These agents detect prostate cancer by finding a biomarker called VPAC1, which is over-expressed as the tumor develops.

“The challenge has been to develop an imaging agent that will target a specific, fingerprint biomarker that visualizes prostate cancer early and reliably,” said Thakur, who is also a member of Jefferson’s Kimmel Cancer Center.

Previous studies with Cu-64 peptides from Thakur yielded promising results in stratifying breast cancer. A pre-clinical study published in the Journal of Nuclear Medicine in late 2009 found that 64Cu-TP3805 detected tumors over-expressing the VPAC1 oncogene more accurately in mice than 18F-FDG, a commonly used agent for imaging tumors.

With this NIH grant, the researchers will test the hypothesis in both mice and humans. They will evaluate two Cu-64 peptides specific for VPAC1 in mice and perform a feasibility study in 25 pre-operative prostate cancer patients, using the best-suited Cu-64 peptide determined from the mouse studies.

“This noninvasive method could significantly contribute to the management of prostate cancer,” said Thakur. “It would result in a reduction of unnecessary biopsy procedures and under-treatment or over-treatment that yield minimal benefits, incontinence or impotence.”

Other researchers include Ethan Halpern, M.D., Charles Intenzo, M.D., and Sung Kim, M.D., of the department of radiology; Edouard Trabulsi, M.D., of the department of urology; and Eric Wickstrom, Ph.D., of the department of biochemistry and molecular biology. The team will partner with NuView, a molecular imaging technology firm, on the study.

For more information: www.kimmelcancercenter.org

Related Content

ProCure Proton Therapy Center New Jersey Celebrates Five-Year Cancer-Free Milestone for Prostate Cancer Patients
News | Proton Therapy | September 20, 2017
ProCure Proton Therapy Center in Somerset, N.J., recently celebrated the five-year cancer-free milestone for the first...
News | Business | September 19, 2017
September 19, 2017 — Invicro LLC, a provider of imaging services and software for research and drug development, anno
ScImage and Invia Partnership Announced
News | PACS | September 19, 2017
ScImage Inc. and Invia Imaging Solutions recently announced formation of a joint partnership at the American Society of...
Toshiba Highlights Latest CT Advancements at RSNA 2017
News | Computed Tomography (CT) | September 18, 2017
Toshiba Medical announced that it will display several new enhancements to its existing computed tomography (CT)...
Philips Launches CardioMD IV Cardiac SPECT Solution at ASNC 2017
Technology | SPECT Imaging | September 15, 2017
September 15, 2017 — Philips highlighted its newest solution for...
Double Targeting Ligands to Identify and Treat Prostate Cancer

The mice were imaged with small-animal PET/CT using 124I-RPS-027 (7.4 MBq [200 μCi]). Credit: JM Kelly et al., Department of Radiology, Weill Cornell Medicine, New York, NY

News | Prostate Cancer | September 14, 2017
Researchers have demonstrated a new, effective way to precisely identify and localize prostate cancer tumors while...
Blue Earth Diagnostics Announcing Results of FALCON PET/CT Trial at ASTRO 2017
News | PET-CT | September 13, 2017
September 13, 2017 — Blue Earth Diagnostics announced the upcoming oral presentation of initial results from the FALC
U.K.'s NICE Supports Use of Hydrogel Spacer in Prostate Cancer Treatement
News | Patient Positioning Radiation Therapy | September 08, 2017
Augmenix Inc. announced that the National Institute for Health and Care Excellence (NICE) in the U.K. has issued...
FDG-PET/CT Predicts Melanoma Patients' Response to Immune Checkpoint Inhibitor Therapy
News | PET-CT | September 07, 2017
September 7, 2017 — Advanced melanoma has a poor prognosis, but immune checkpoint inhibitor therapy can be effective
Augmenix Announces Medicare Administrative Contractor Palmetto Coverage for SpaceOAR Hydrogel
News | Patient Positioning Radiation Therapy | September 05, 2017
Augmenix Inc. announced that Palmetto GBA LLC — the Medicare Administrative Contractor (MAC) covering North Carolina,...
Overlay Init