News | May 21, 2012

NIH $2.6 Million Grant Used to Study Imaging Prostate Cancer Without Biopsy

May 21, 2012 — The Kimmel Cancer Center and the Department of Radiology at Thomas Jefferson University in Pennsylvania has received a five-year, $2.6 million grant from the National Institutes of Health (NIH). The grant will support investigations of a potentially revolutionary method that can stage prostate cancers and detect recurrent disease more accurately, significantly reducing the number of confirmation biopsies; such biopsies can be invasive, costly and often lead to false-positive readings.

The new technique involves the use of a positron emission tomography (PET) scan and a novel imaging agent. The study is being led by Mathew Thakur, Ph.D., professor of radiology at Jefferson Medical College of Thomas Jefferson University and the director of the Laboratories of Radiopharmaceutical Research and Molecular Imaging.

Prostate specific antigen (PSA) measurements, ultrasonography and magnetic resonance imaging (MRI) remain standard tools for diagnosis and management of prostate cancer; however, each requires an invasive biopsy for histologic confirmation. Biopsies are associated with morbidity and high costs, and more than 65 percent of the 1.5 million biopsies performed each year in the United States show benign pathology, indicating a high false-positive rate for these standard diagnostic tools.

These limitations, the researchers say, demonstrate a dire need for noninvasive methods that can accurately stage prostate cancer, detect recurrent disease and image metastatic lesions with improved reliability.

Thakur and his colleagues are studying Cu-64 peptide biomolecules to evaluate prostate cancer tumors via PET imaging. These agents detect prostate cancer by finding a biomarker called VPAC1, which is over-expressed as the tumor develops.

“The challenge has been to develop an imaging agent that will target a specific, fingerprint biomarker that visualizes prostate cancer early and reliably,” said Thakur, who is also a member of Jefferson’s Kimmel Cancer Center.

Previous studies with Cu-64 peptides from Thakur yielded promising results in stratifying breast cancer. A pre-clinical study published in the Journal of Nuclear Medicine in late 2009 found that 64Cu-TP3805 detected tumors over-expressing the VPAC1 oncogene more accurately in mice than 18F-FDG, a commonly used agent for imaging tumors.

With this NIH grant, the researchers will test the hypothesis in both mice and humans. They will evaluate two Cu-64 peptides specific for VPAC1 in mice and perform a feasibility study in 25 pre-operative prostate cancer patients, using the best-suited Cu-64 peptide determined from the mouse studies.

“This noninvasive method could significantly contribute to the management of prostate cancer,” said Thakur. “It would result in a reduction of unnecessary biopsy procedures and under-treatment or over-treatment that yield minimal benefits, incontinence or impotence.”

Other researchers include Ethan Halpern, M.D., Charles Intenzo, M.D., and Sung Kim, M.D., of the department of radiology; Edouard Trabulsi, M.D., of the department of urology; and Eric Wickstrom, Ph.D., of the department of biochemistry and molecular biology. The team will partner with NuView, a molecular imaging technology firm, on the study.

For more information: www.kimmelcancercenter.org

Related Content

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

PET/CT imaging showing uptake and retention of 86Y-NM600 (imaging agent) in immunocompetent mice bearing prostate tumors. PET imaging data was employed to estimate tumor dosimetry and prescribe an immunomodulatory 90Y-NM600 (therapy agent) injected activity. Image courtesy of R Hernandez et al., University of Wisconsin-Madison, WI.

News | PET-CT | July 15, 2020
July 15, 2020 — ...
Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

Representative maximum-intensity projection PET images of a healthy human volunteer injected with 64Cu-NOTA-EB-RGD at 1, 8, and 24 hours after injection. Axial MRI and PET slices of glioblastoma patient injected with 64Cu-NOTA-EB-RGD at different time points after injection. Image courtesy of Jingjing Zhang et al., Peking Union Medical College Hospital, Beijing, China/ Xiaoyuan Chen et al., Laboratory of Molecular Imaging and Nanomedicine, NIBIB/NIH, Bethesda, USA

News | PET Imaging | July 15, 2020
July 15, 2020 — A first-in-human study presented at the Society of...
Adult male with decades of right neck pain, discomfort and tightening following birth injury. The patient had failed multiple standard therapeutic maneuvers before presenting for 18F-FDG PET/MR imaging. Images shows abnormally elevated FDG uptake (white arrows; SUVmax = 1.2) observed in a linear pattern in the space in the posterolateral right neck, between the oblique capitis inferior and the semispinalis capitis muscles, where the greater occipital nerve resides. By comparison, the same region on the cont

Adult male with decades of right neck pain, discomfort and tightening following birth injury. The patient had failed multiple standard therapeutic maneuvers before presenting for 18F-FDG PET/MR imaging. Images shows abnormally elevated FDG uptake (white arrows; SUVmax = 1.2) observed in a linear pattern in the space in the posterolateral right neck, between the oblique capitis inferior and the semispinalis capitis muscles, where the greater occipital nerve resides. By comparison, the same region on the contralateral, asymptomatic side of the neck has an SUVmax = 0.7. This result encouraged a surgeon to explore the area. The surgeon ultimately found a collection of small arteries wrapped around the nerve in this location. The small arteries underwent lysis by the surgeon and the patient reported tremendous relief of symptoms. (A) Coronal thick slab MIP of 18F-FDG PET. (B) Axial LAVA FLEX MRI through the cervical spine. (C) Axial PET at the same slice as the axial MRI. (D) Fused axial PET/MRI. Image courtesy of Cipriano, et al., Stanford University, CA.

News | SNMMI | July 14, 2020
July 14, 2020 — A new molecular imaging approach utilizing 18F-FDG...
Left: Total-body PET/CT in psoriatic arthritis: multiple joints affected, shoulders, elbows, wrists, knees, ankles and small joints of the hands/feet. Arrow: left wrist; arrowhead: right wrist. Middle: Total-body PET/CT in rheumatoid arthritis: multiple joints affected, right shoulder, small joints of the left hand. Arrowhead at the 4th proximal interphalangeal joint shows classic ring-like uptake pattern. Arrow on the foot images demonstrates the hammer toe deformity besides big toe arthritis. Right: Total

Left: Total-body PET/CT in psoriatic arthritis: multiple joints affected, shoulders, elbows, wrists, knees, ankles and small joints of the hands/feet. Arrow: left wrist; arrowhead: right wrist. Middle: Total-body PET/CT in rheumatoid arthritis: multiple joints affected, right shoulder, small joints of the left hand. Arrowhead at the 4th proximal interphalangeal joint shows classic ring-like uptake pattern. Arrow on the foot images demonstrates the hammer toe deformity besides big toe arthritis. Right: Total-body PET/CT in osteoarthritis: affected joints include the left elbow, right knee (arrow) and right big toe (arrowhead). Image courtesy of YG Abdelhafez et al., University of California Davis, Sacramento, CA.

News | SNMMI | July 14, 2020
July 14, 2020 — For the first time, physicians can examine the systemic burden of inflammatory arthritis simultaneous
World's largest radiation oncology meeting will offer full conference on interactive platform October 25-28, 2020
News | ASTRO | July 09, 2020
July 9, 2020 — Registration opens today for the American Society for Radiation Oncology's (...
Researchers reviewed results of prostate biopsies on over 3,400 men who had targets identified on prostate MRI and found that the positive predictive value of the test for prostate cancer was highly variable at different sites
News | Prostate Cancer | July 01, 2020
July 1, 2020 — Prostate MRI is an emerging technology used to identify and guide treatment for...
Nuclear Cardiology Optimistic About Return to Pre-COVID-19 Exam Levels. An American Society of Nuclear Cardiology (ASNC) member survey are confident nuclear cardiology volumes will return to pre-pandemic levels. #COVID19 #SARScov2
News | Nuclear Imaging | June 01, 2020
June 1, 2020 — While acknowledging the challenges their specialty is facing, more than two-thirds of respondents to a
The FDA has approved Lilly’s TAUVID (flortaucipir F 18 injection), a radioactive diagnostic agent, for PET imaging of the brain to estimate the density and distribution of aggregated tau neurofibrillary tangles (NFTs) in adult patients with cognitive impairment who are being evaluated for Alzheimer’s disease

Getty Images

News | Contrast Media | June 01, 2020
June 1, 2020 — TAUVID, a radioactive diagnostic agent, has been approved by the FDA for...
MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

 

News | Radiation Therapy | June 01, 2020
June 1, 2020 — RefleXion Medical, a therape