News | Artificial Intelligence | September 03, 2019

New Radiomics Model Uses Immunohistochemistry to Predict Thyroid Nodules

Machine learning-based model uses texture analysis to identify whether thyroid nodules are benign or malignant

New Radiomics Model Uses Immunohistochemistry to Predict Thyroid Nodules

Workflow of radiomics analysis for IHC indicators. Yellow lines denote area of analysis; red lines denote ROI for radiomic features extraction. X = original image, L = low-pass filter, H = high-pass filter. Image courtesy of Jiabing Gu, et al.

September 3, 2019 — Researchers have validated a first-of-its-kind machine learning–based model to evaluate immunohistochemical (IHC) characteristics in patients with suspected thyroid nodules, according to an ahead-of-print article published in the December issue of the American Journal of Roentgenology (AJR).1 The research team achieved “excellent performance” for individualized noninvasive prediction of the presence of cytokeratin 19, galectin 3 and thyroperoxidase based upon computed tomography (CT) images.

“When IHC information is hidden on CT images,” principal investigator Jiabing Gu explained, “it may be possible to discern the relation between this information and radiomics by use of texture analysis.” 

To assess whether texture analysis could be utilized to predict IHC characteristics of suspected thyroid nodules, Gu and colleagues from China’s University of Jinan enrolled 103 patients (training cohort–to-validation cohort ratio, ≈ 3:1) with suspected thyroid nodules who had undergone thyroidectomy and IHC analysis from January 2013 to January 2016. All 103 patients — 28 men, 75 women; median age, 58 years; age range, 33–70 years — underwent CT before surgery, and 3D Slicer v 4.8.1 was used to analyze images of the surgical specimen.

To facilitate test-retest methods, 20 patients were imaged in two sets of CT series within 10–15 minutes, using the same scanner (LightSpeed 16, Philips Healthcare) and protocols, without contrast administration. These images were used only to select reproducible and nonredundant features, not to establish or verify the radiomic model. 

The Kruskal-Wallis test (SPSS v 19, IBM) was employed to improve classification performance between texture feature and IHC characteristic. Gu et al. considered characteristics with p < 0.05 significant, and the feature-based model was trained via support vector machine methods, assessed with respect to accuracy, sensitivity, specificity, corresponding AUC and independent validation. From 828 total features, 86 reproducible and nonredundant features were selected to build the model. 

The best performance of the cytokeratin 19 radiomic model yielded accuracy of 84.4 percent in the training cohort and 80 percent in the validation cohort. Meanwhile, the thyroperoxidase and galectin 3 predictive models evidenced accuracies of 81.4 percent and 82.5 percent in the training cohort, and 84.2 percent and 85 percent in the validation cohort, respectively. 

Noting that cytokeratin 19 and galectin 3 levels are high in papillary carcinoma, Gu maintained that these models can help radiologists and oncologists to identify papillary thyroid cancers, “which is beneficial for diagnosing papillary thyroid cancers earlier and choosing treatment options in a timely manner.”

Ultimately, asserted Gu, “this model may be used to identify benign and malignant thyroid nodules.”

For more information: www.ajronline.org

 

Reference

1. Gu J., Zhu J., Qiu Q., et al. Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning–Based Radiomics. American Journal of Roentgenology, published online Aug. 28, 2019. DOI: 10.2214/AJR.19.21535

Related Content

he U.S. Food and Drug Administration (FDA) has issued a final order to reclassify medical image analyzers applied to mammography breast cancer, ultrasound breast lesions, radiograph lung nodules and radiograph dental caries detection, postamendments class III devices (regulated under product code MYN), into class II (special controls), subject to premarket notification

Image courtesy of iCAD

News | Computer-Aided Detection Software | January 22, 2020
January 22, 2020 — The U.S.
Iodine-based CT contrast ready for scanning with a Canon Aquilion One 320-slice CT system at Northwestern Medicine Central DuPage Hospital in the Chicago suburbs.
News | Radiology Imaging | January 22, 2020
January 22, 2020 — The risk of administering modern...
Medical imaging technology company Oxipit announced partnership with Swiss medical distribution company Healthcare Konnect to bring ChestEye AI imaging suite to healthcare institutions in Nigeria
News | Artificial Intelligence | January 22, 2020
January 22, 2020 — Medical imaging technology company Oxipit ann
Hitachi Healthcare Americas announced that it will create a new dedicated research and development facility within its North American headquarters facility in Twinsburg, Ohio
News | Radiology Business | January 21, 2020
January 21, 2020 — Hitachi Healthcare Americas announced that it will create a new dedicated research and development
This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Videos | RSNA | January 13, 2020
ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the
Sponsored Content | Videos | Computed Tomography (CT) | January 06, 2020
Hitachi announced the FDA clearance of its newest CT – Scenaria View – at RSNA2019.