News | Artificial Intelligence | September 03, 2019

New Radiomics Model Uses Immunohistochemistry to Predict Thyroid Nodules

Machine learning-based model uses texture analysis to identify whether thyroid nodules are benign or malignant

New Radiomics Model Uses Immunohistochemistry to Predict Thyroid Nodules

Workflow of radiomics analysis for IHC indicators. Yellow lines denote area of analysis; red lines denote ROI for radiomic features extraction. X = original image, L = low-pass filter, H = high-pass filter. Image courtesy of Jiabing Gu, et al.

September 3, 2019 — Researchers have validated a first-of-its-kind machine learning–based model to evaluate immunohistochemical (IHC) characteristics in patients with suspected thyroid nodules, according to an ahead-of-print article published in the December issue of the American Journal of Roentgenology (AJR).1 The research team achieved “excellent performance” for individualized noninvasive prediction of the presence of cytokeratin 19, galectin 3 and thyroperoxidase based upon computed tomography (CT) images.

“When IHC information is hidden on CT images,” principal investigator Jiabing Gu explained, “it may be possible to discern the relation between this information and radiomics by use of texture analysis.” 

To assess whether texture analysis could be utilized to predict IHC characteristics of suspected thyroid nodules, Gu and colleagues from China’s University of Jinan enrolled 103 patients (training cohort–to-validation cohort ratio, ≈ 3:1) with suspected thyroid nodules who had undergone thyroidectomy and IHC analysis from January 2013 to January 2016. All 103 patients — 28 men, 75 women; median age, 58 years; age range, 33–70 years — underwent CT before surgery, and 3D Slicer v 4.8.1 was used to analyze images of the surgical specimen.

To facilitate test-retest methods, 20 patients were imaged in two sets of CT series within 10–15 minutes, using the same scanner (LightSpeed 16, Philips Healthcare) and protocols, without contrast administration. These images were used only to select reproducible and nonredundant features, not to establish or verify the radiomic model. 

The Kruskal-Wallis test (SPSS v 19, IBM) was employed to improve classification performance between texture feature and IHC characteristic. Gu et al. considered characteristics with p < 0.05 significant, and the feature-based model was trained via support vector machine methods, assessed with respect to accuracy, sensitivity, specificity, corresponding AUC and independent validation. From 828 total features, 86 reproducible and nonredundant features were selected to build the model. 

The best performance of the cytokeratin 19 radiomic model yielded accuracy of 84.4 percent in the training cohort and 80 percent in the validation cohort. Meanwhile, the thyroperoxidase and galectin 3 predictive models evidenced accuracies of 81.4 percent and 82.5 percent in the training cohort, and 84.2 percent and 85 percent in the validation cohort, respectively. 

Noting that cytokeratin 19 and galectin 3 levels are high in papillary carcinoma, Gu maintained that these models can help radiologists and oncologists to identify papillary thyroid cancers, “which is beneficial for diagnosing papillary thyroid cancers earlier and choosing treatment options in a timely manner.”

Ultimately, asserted Gu, “this model may be used to identify benign and malignant thyroid nodules.”

For more information: www.ajronline.org

 

Reference

1. Gu J., Zhu J., Qiu Q., et al. Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning–Based Radiomics. American Journal of Roentgenology, published online Aug. 28, 2019. DOI: 10.2214/AJR.19.21535

Related Content

Densitas Wins Major Procurement of Breast Density Software for DIMASOS Breast Screening Trial
News | Breast Density | September 20, 2019
Densitas Inc. announced it has won a procurement of its densitas densityai software for deployment in up to 24 breast...
Numerical simulation with a heterogeneous mouse

Numerical simulation with a heterogeneous mouse. (a) The geometry of the mouse with major organs near the source, and (b) the surface fluence computed with TIM-OS. Image courtesy of Rensselaer Polytechnic Institute.

News | Oncology Diagnostics | September 20, 2019
If researchers could observe drug delivery and its effect on cancer cells in real time, they would be able to tailor...
Screening Mammography Could Benefit Men at High Risk of Breast Cancer
News | Mammography | September 18, 2019
Selective mammography screening can provide potentially lifesaving early detection of breast cancer in men who are at...
Varian Unveils Ethos Solution for Adaptive Radiation Therapy
News | Image Guided Radiation Therapy (IGRT) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, being held Sept. 15-18 in Chicago, Varian...
The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning

The Siemens Somatom Go.Sim computed tomography (CT) system for dedicated radiation therapy planning. Image courtesy of Siemens Healthineers.

News | Computed Tomography (CT) | September 15, 2019
Siemens Healthineers debuted two computed tomography (CT) systems dedicated to radiation therapy (RT) planning at the...
Philips Showcases Integrated Radiation Oncology Portfolio at ASTRO 2019
News | Radiation Oncology | September 13, 2019
Philips will showcase its integrated radiation oncology portfolio at the American Society of Radiation Oncology (ASTRO...
FDA Clears GE Healthcare's Critical Care Suite Chest X-ray AI
Technology | X-Ray | September 12, 2019
GE Healthcare announced the U.S. Food and Drug Administration’s (FDA) 510(k) clearance of Critical Care Suite, a...
Richardson Healthcare Receives CE Mark Approval for ALTA750 Canon/Toshiba CT Replacement Tube
News | Computed Tomography (CT) | September 11, 2019
Richardson Healthcare, a Division of Richardson Electronics Ltd., announced it has received CE Mark approval for the...
Bayer Introduces Medrad Stellant Flex CT Injection System
Technology | Contrast Media Injectors | September 11, 2019
Bayer announced the introduction of the Medrad Stellant Flex computed tomography (CT) injection system. Stellant Flex...
iCAD's ProFound AI Wins Best New Radiology Solution in 2019 MedTech Breakthrough Awards
News | Computer-Aided Detection Software | September 09, 2019
iCAD Inc. announced MedTech Breakthrough, an independent organization that recognizes the top companies and solutions...