News | Artificial Intelligence | September 03, 2019

Machine learning-based model uses texture analysis to identify whether thyroid nodules are benign or malignant

New Radiomics Model Uses Immunohistochemistry to Predict Thyroid Nodules

Workflow of radiomics analysis for IHC indicators. Yellow lines denote area of analysis; red lines denote ROI for radiomic features extraction. X = original image, L = low-pass filter, H = high-pass filter. Image courtesy of Jiabing Gu, et al.


September 3, 2019 — Researchers have validated a first-of-its-kind machine learning–based model to evaluate immunohistochemical (IHC) characteristics in patients with suspected thyroid nodules, according to an ahead-of-print article published in the December issue of the American Journal of Roentgenology (AJR).1 The research team achieved “excellent performance” for individualized noninvasive prediction of the presence of cytokeratin 19, galectin 3 and thyroperoxidase based upon computed tomography (CT) images.

“When IHC information is hidden on CT images,” principal investigator Jiabing Gu explained, “it may be possible to discern the relation between this information and radiomics by use of texture analysis.” 

To assess whether texture analysis could be utilized to predict IHC characteristics of suspected thyroid nodules, Gu and colleagues from China’s University of Jinan enrolled 103 patients (training cohort–to-validation cohort ratio, ≈ 3:1) with suspected thyroid nodules who had undergone thyroidectomy and IHC analysis from January 2013 to January 2016. All 103 patients — 28 men, 75 women; median age, 58 years; age range, 33–70 years — underwent CT before surgery, and 3D Slicer v 4.8.1 was used to analyze images of the surgical specimen.

To facilitate test-retest methods, 20 patients were imaged in two sets of CT series within 10–15 minutes, using the same scanner (LightSpeed 16, Philips Healthcare) and protocols, without contrast administration. These images were used only to select reproducible and nonredundant features, not to establish or verify the radiomic model. 

The Kruskal-Wallis test (SPSS v 19, IBM) was employed to improve classification performance between texture feature and IHC characteristic. Gu et al. considered characteristics with p < 0.05 significant, and the feature-based model was trained via support vector machine methods, assessed with respect to accuracy, sensitivity, specificity, corresponding AUC and independent validation. From 828 total features, 86 reproducible and nonredundant features were selected to build the model. 

The best performance of the cytokeratin 19 radiomic model yielded accuracy of 84.4 percent in the training cohort and 80 percent in the validation cohort. Meanwhile, the thyroperoxidase and galectin 3 predictive models evidenced accuracies of 81.4 percent and 82.5 percent in the training cohort, and 84.2 percent and 85 percent in the validation cohort, respectively. 

Noting that cytokeratin 19 and galectin 3 levels are high in papillary carcinoma, Gu maintained that these models can help radiologists and oncologists to identify papillary thyroid cancers, “which is beneficial for diagnosing papillary thyroid cancers earlier and choosing treatment options in a timely manner.”

Ultimately, asserted Gu, “this model may be used to identify benign and malignant thyroid nodules.”

For more information: www.ajronline.org

 

Reference

1. Gu J., Zhu J., Qiu Q., et al. Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning–Based Radiomics. American Journal of Roentgenology, published online Aug. 28, 2019. DOI: 10.2214/AJR.19.21535


Related Content

News | Magnetic Resonance Imaging (MRI)

July 2, 2025 — Philips has received FDA 510(k) clearance for SmartSpeed Precise[1] MR’s latest deep learning ...

Time July 03, 2025
arrow
News | Ultrasound Imaging

July 1, 2025 — UPDATE: The final paper is now available at: JMIR AI - ChatGPT-4–Driven Liver Ultrasound Radiomics ...

Time July 01, 2025
arrow
News | Magnetic Resonance Imaging (MRI)

June 26, 2025 — Siemens Healthineers has received Food and Drug Administration clearance for the Magnetom Flow.Ace, its ...

Time June 26, 2025
arrow
News | Prostate Cancer

June 26, 2025 – Quibim, a global provider of quantitative medical imaging solutions, has launched AI-QUAL, a new feature ...

Time June 26, 2025
arrow
News | PET-CT

June 19, 2025 — Building on a collaboration that spans more than three decades, GE HealthCare has renewed its research ...

Time June 19, 2025
arrow
News | Bone Densitometry Systems

June 19, 2025 — Naitive Technologies has published results demonstrating the diagnostic performance of its AI-powered ...

Time June 18, 2025
arrow
News | Lung Imaging

June 18, 2025 — Exo recently announced that now included on its Exo Iris is the first ever FDA 510(k) cleared AI for ...

Time June 18, 2025
arrow
News | Digital Pathology

June 11, 2025 — Diagnostic laboratory leaders view digital pathology and artificial intelligence (AI) as pivotal to ...

Time June 12, 2025
arrow
News | Lung Imaging

June 11, 2025 — To prepare healthcare workforces and providers for an AI-driven future, Qure.ai has expanded its Global ...

Time June 11, 2025
arrow
News | Radiology Imaging

June 10, 2025 — CIVIE has announced the official launch of RadPod, an AI-driven, on-demand radiology platform designed ...

Time June 10, 2025
arrow
Subscribe Now