News | PET Imaging | March 29, 2016

New PET Imaging Technology Could Improve Cancer Treatment Response

New method could lead to better therapies for many deadly cancers

PET imaging, cancer treatment, UCLA study, Caius Radu, dCK

March 29, 2016 —A promising new discovery by University of California Los Angeles (UCLA) scientists could lead to a new method of identifying cancer patients that express high levels of an enzyme and are more likely to respond to cancer treatments.

Decades of significant advances and improvements in positron emission tomography (PET) imaging technology have led to the detection of an enzyme in humans that plays a significant role in DNA formation, the building blocks of life. The enzyme, called deoxycytidine kinase (dCK), was previously found to be highly expressed in acute leukemia cells and in activated lymphocytes and controls a critical step in the nucleoside salvage pathway, an important therapeutic and PET imaging target in cancer.

The study was published online March 28 in the journal Proceedings of the National Academy of Sciences of the United States of America.

In a seven-year study, a team of UCLA researchers led by Caius Radu, M.D., a UCLA Jonsson Comprehensive Cancer Center member and a professor in the Department of Molecular and Medical Pharmacology, developed a highly sophisticated PET probe called [18F]CFA that is capable of detecting dCK activity in humans for the first time.

"The quality of the images is much better," said Radu. "We are able to clearly see tissues, including tumor tissues, with high dCK activity that we haven't seen before in humans using any of the other probes previously developed for this enzyme."

PET is a noninvasive imaging technology that uses a radioactive substance, called PET probe, to look for disease in the body and it also shows how organs and tissues are functioning. Until recently, PET technology was only able to clearly detect dCK in mice due to metabolic instability of the previous probes and cross-reactivity with a dCK-related enzyme in humans.

The dCK enzyme plays an integral role in allowing drugs such as Clofarabine, Cytarabine and Fludarabine to treat certain types of leukemia and others like Gemcitabine to treat breast, ovarian, non-small cell lung and pancreatic cancers.

"This enzyme is essential for the therapeutic activity of an entire class of anticancer drugs and even for some antiviral drugs," said Radu, who is also a member of the UCLA Broad Stem Cell Research Center. "It can take an inactive drug and activate it. If you trick a cancer cell or virus to activate the drug, it would be toxic for the cancer cell or viral genome."

Since activated immune cells increase their expression of the dCK enzyme, [18F]CFA could also be used to monitor the effectiveness of immunotherapeutic interventions, said Radu.

The researchers hope to begin clinical trials with the [18F]CFA in the near future. Radu and his colleagues will eventually seek an approval by the U.S. Food & Drug Administration.

Radu and his team are co-founders of Sofie Biosciences and they are the inventors of [18F]CFA and analogs, which were patented by the University of California and have been licensed to Sofie Biosciences. University of California also patented additional intellectual property for small molecule dCK inhibitors.

For more information: www.pnas.org

Related Content

Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function.

Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function. Image courtesy of YaleNews.

News | PET Imaging | May 14, 2020
May 14, 2020 — New imaging technology allows scientists to see the widespread loss of brain synapses in early stages
The Society of Nuclear Medicine and Molecular Imaging's 2020 annual meeting has been reimagined, and is now the SNMMI 2020 Annual Meeting — Virtual Edition
News | Coronavirus (COVID-19) | April 30, 2020
April 30, 2020 — The Society of Nuclear Medicine and Molecular Imaging's 2020 annual meeting has been reimagined, and
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 U.S. Army Spc. Jonathon Hyde and Spc. Casymn Harrison from the 1434th Engineer Company, Grayling, Mich., Michigan National Guard, prepare patient rooms at TCF Regional Care Center in Detroit in advance of receiving COVID-19 patients, April 9, 2020 #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2

U.S. Army Spc. Jonathon Hyde and Spc. Casymn Harrison from the 1434th Engineer Company, Grayling, Mich., Michigan National Guard, prepare patient rooms at TCF Regional Care Center in Detroit in advance of receiving COVID-19 patients, April 9, 2020. The TCF Center in Detroit has been converted into a 970-bed alternative care facility for COVID-19 patients by the Federal Emergency Management Agency, in partnership with the U.S. Army Corps of Engineers and Michigan National Guard. (Photo courtesy of U.S. Air National Guard photo by Master Sgt. Scott Thompson)

Feature | Coronavirus (COVID-19) | April 15, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
Maximum-intensity PET projections at each time point for one rhesus monkey in the 89Zr-DFO-squaramide-anti-gD group.

Maximum-intensity PET projections at each time point for one rhesus monkey in the 89Zr-DFO-squaramide-anti-gD group. Image courtesy of Eric Berg, University of California, Davis, CA

News | PET Imaging | April 10, 2020
April 10, 2020 — Combining 89Zr-labeled antibodies with total-body...
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im