News | PET Imaging | March 29, 2016

New PET Imaging Technology Could Improve Cancer Treatment Response

New method could lead to better therapies for many deadly cancers

PET imaging, cancer treatment, UCLA study, Caius Radu, dCK

March 29, 2016 —A promising new discovery by University of California Los Angeles (UCLA) scientists could lead to a new method of identifying cancer patients that express high levels of an enzyme and are more likely to respond to cancer treatments.

Decades of significant advances and improvements in positron emission tomography (PET) imaging technology have led to the detection of an enzyme in humans that plays a significant role in DNA formation, the building blocks of life. The enzyme, called deoxycytidine kinase (dCK), was previously found to be highly expressed in acute leukemia cells and in activated lymphocytes and controls a critical step in the nucleoside salvage pathway, an important therapeutic and PET imaging target in cancer.

The study was published online March 28 in the journal Proceedings of the National Academy of Sciences of the United States of America.

In a seven-year study, a team of UCLA researchers led by Caius Radu, M.D., a UCLA Jonsson Comprehensive Cancer Center member and a professor in the Department of Molecular and Medical Pharmacology, developed a highly sophisticated PET probe called [18F]CFA that is capable of detecting dCK activity in humans for the first time.

"The quality of the images is much better," said Radu. "We are able to clearly see tissues, including tumor tissues, with high dCK activity that we haven't seen before in humans using any of the other probes previously developed for this enzyme."

PET is a noninvasive imaging technology that uses a radioactive substance, called PET probe, to look for disease in the body and it also shows how organs and tissues are functioning. Until recently, PET technology was only able to clearly detect dCK in mice due to metabolic instability of the previous probes and cross-reactivity with a dCK-related enzyme in humans.

The dCK enzyme plays an integral role in allowing drugs such as Clofarabine, Cytarabine and Fludarabine to treat certain types of leukemia and others like Gemcitabine to treat breast, ovarian, non-small cell lung and pancreatic cancers.

"This enzyme is essential for the therapeutic activity of an entire class of anticancer drugs and even for some antiviral drugs," said Radu, who is also a member of the UCLA Broad Stem Cell Research Center. "It can take an inactive drug and activate it. If you trick a cancer cell or virus to activate the drug, it would be toxic for the cancer cell or viral genome."

Since activated immune cells increase their expression of the dCK enzyme, [18F]CFA could also be used to monitor the effectiveness of immunotherapeutic interventions, said Radu.

The researchers hope to begin clinical trials with the [18F]CFA in the near future. Radu and his colleagues will eventually seek an approval by the U.S. Food & Drug Administration.

Radu and his team are co-founders of Sofie Biosciences and they are the inventors of [18F]CFA and analogs, which were patented by the University of California and have been licensed to Sofie Biosciences. University of California also patented additional intellectual property for small molecule dCK inhibitors.

For more information: www.pnas.org

Related Content

 Prostate cancer MRI
News | Clinical Trials | November 15, 2019
November 15, 2019 — Theragnostics, which is developing innovative radiopharm
Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can bee seen in this photo on either side of the patient bed. These can be rotated above the patient.

Philips Medical System is recalling its older Forte Gamma Camera SPECT imaging systems due to the possibility of the detectors falling off of the unit onto the patient. The two gamma cameras can be seen in this photo on either side of the patient bed. These can be rotated above the patient.

Feature | Nuclear Imaging | November 05, 2019 | Dave Fornell, Editor
November 5, 2019 — Philips Medical System is recalling the Forte Gamma Camera System due to the potential for the 660
 Phoenix’s fusion neutron generation technology.
News | Radiopharmaceuticals and Tracers | October 28, 2019
October 28, 2019 — Phoenix LLC and Shine Medical Technologies LLC, nuclear technology companies focused on near-term
GE Healthcare and Theragnostics Partnering on PSMA PET/CT Imaging Agent
News | Prostate Cancer | October 16, 2019
GE Healthcare and Theragnostics have entered into a global commercial partnership for a new prostate-specific membrane...
ASNC Announces Multisocietal Cardiac Amyloidosis Imaging Consensus
News | Cardiac Imaging | September 09, 2019
September 9, 2019 — The American Society of Nuclear Cardiology (ASNC) published a new expert consensus document along
A 3-D printed tungsten pre-clinical X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten pre-clinical X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | September 04, 2019 | By Steve Jeffery
In ...
A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one hold out who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

A SPECT nuclear scan of the heart to show perfusion defects in the myocardium due to coronary artery blockages or heart attack. The imaging uses the Mo-99 based medical imaging isotope Tc-99m. The U.S. government has created policy to move away from use of highly enriched uranium (HEU) to low-enriched uranium (LEU) for Mo-99 isotope production, but there is one holdout who has not yet converted before a 2020 deadline. Photo courtesy of Philips Healthcare.

Feature | Nuclear Imaging | August 30, 2019 | Dave Fornell, Editor
In a surprising move, the National Institute for Radioelements (IRE) has applied for a new license to export highly e
University of Alabama at Birmingham Leading Production of Theranostic Radioisotope

Image courtesy of the University of Alabama at Birmingham

News | Radiopharmaceuticals and Tracers | August 29, 2019
The University of Alabama at Birmingham, in conjunction with researchers at the University of Wisconsin and Argonne...
United Imaging Announces First U.S. Clinical Installation of uExplorer Total-body PET/CT
News | PET-CT | August 15, 2019
United Imaging announced that its uExplorer total-body positron emission tomography/computed tomography (PET/CT) system...