News | PET Imaging | March 29, 2016

New PET Imaging Technology Could Improve Cancer Treatment Response

New method could lead to better therapies for many deadly cancers

PET imaging, cancer treatment, UCLA study, Caius Radu, dCK

March 29, 2016 —A promising new discovery by University of California Los Angeles (UCLA) scientists could lead to a new method of identifying cancer patients that express high levels of an enzyme and are more likely to respond to cancer treatments.

Decades of significant advances and improvements in positron emission tomography (PET) imaging technology have led to the detection of an enzyme in humans that plays a significant role in DNA formation, the building blocks of life. The enzyme, called deoxycytidine kinase (dCK), was previously found to be highly expressed in acute leukemia cells and in activated lymphocytes and controls a critical step in the nucleoside salvage pathway, an important therapeutic and PET imaging target in cancer.

The study was published online March 28 in the journal Proceedings of the National Academy of Sciences of the United States of America.

In a seven-year study, a team of UCLA researchers led by Caius Radu, M.D., a UCLA Jonsson Comprehensive Cancer Center member and a professor in the Department of Molecular and Medical Pharmacology, developed a highly sophisticated PET probe called [18F]CFA that is capable of detecting dCK activity in humans for the first time.

"The quality of the images is much better," said Radu. "We are able to clearly see tissues, including tumor tissues, with high dCK activity that we haven't seen before in humans using any of the other probes previously developed for this enzyme."

PET is a noninvasive imaging technology that uses a radioactive substance, called PET probe, to look for disease in the body and it also shows how organs and tissues are functioning. Until recently, PET technology was only able to clearly detect dCK in mice due to metabolic instability of the previous probes and cross-reactivity with a dCK-related enzyme in humans.

The dCK enzyme plays an integral role in allowing drugs such as Clofarabine, Cytarabine and Fludarabine to treat certain types of leukemia and others like Gemcitabine to treat breast, ovarian, non-small cell lung and pancreatic cancers.

"This enzyme is essential for the therapeutic activity of an entire class of anticancer drugs and even for some antiviral drugs," said Radu, who is also a member of the UCLA Broad Stem Cell Research Center. "It can take an inactive drug and activate it. If you trick a cancer cell or virus to activate the drug, it would be toxic for the cancer cell or viral genome."

Since activated immune cells increase their expression of the dCK enzyme, [18F]CFA could also be used to monitor the effectiveness of immunotherapeutic interventions, said Radu.

The researchers hope to begin clinical trials with the [18F]CFA in the near future. Radu and his colleagues will eventually seek an approval by the U.S. Food & Drug Administration.

Radu and his team are co-founders of Sofie Biosciences and they are the inventors of [18F]CFA and analogs, which were patented by the University of California and have been licensed to Sofie Biosciences. University of California also patented additional intellectual property for small molecule dCK inhibitors.

For more information: www.pnas.org

Related Content

Siemens Healthineers Announces FDA Clearance of syngo.via VB30 Molecular Imaging Software
Technology | Nuclear Imaging | July 16, 2018
At the 2018 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), June 23-26 in Philadelphia...
SNMMI Image of the Year Highlights Theranostic Approach for Advanced Prostate Cancer

IMAGE OF THE YEAR: PSMA PET before and after lutetium-177 PSMA617 theranostics in 8 patients with metastatic prostate cancer who exhausted standard therapeutic options.

68Ga-PSMA11 PET maximum intensity projection (MIP) images at baseline and 3 months after 177Lu-PSMA617 in 8 patients with PSA decline ≥ 98 percent in a prospective phase II study. Any disease with SUV over 3 is in red. Credit: Michael Hofman, John Violet, Shahneen Sandhu, Justin Ferdinandus, Amir Iravani, Grace Kong, Aravind Ravi Kumar, Tim Akhurst, Sue Ping Thang, Price Jackson, Mark Scalzo, Scott Williams and Rodney Hicks, Peter MacCallum Cancer Centre, Melbourne, Australia.

News | PET Imaging | June 29, 2018
In the battle against metastatic castrate-resistant prostate cancer, studies have demonstrated a high response rate to...
MILabs Introduces Futuristic PET Capabilities on New VECTor6 System
Technology | PET Imaging | June 28, 2018
At the 2018 Society of Nuclear Medicine and Molecular Imaging (SNMMI) annual meeting, June 23-26, in Philadelphia,...
Philips North America and GE Healthcare Win IMV PET Imaging ServiceTrak Awards
News | PET Imaging | June 25, 2018
IMV, part of the Science and Medicine Group and a market research and business intelligence provider to the imaging...
New ASNC SPECT Imaging Guideline Addresses Advances in Myocardial Perfusion Imaging
News | SPECT Imaging | June 21, 2018
The American Society of Nuclear Cardiology (ASNC) has published an update to its 2010 guidelines for single photon...
FDA Clears New Imaging Functionalities for Biograph mCT PET/CT Systems
Technology | PET-CT | June 21, 2018
Siemens Healthineers will announce U.S. Food and Drug Administration (FDA) clearance of four new system features for...
PET/CT Changes Care for 59 Percent of Suspected Recurrent Prostate Cancer Cases
News | Prostate Cancer | June 13, 2018
A recently presented investigational clinical trial evaluated the impact of 18F fluciclovine positron emission...
Nuclear imaging scan showing very good tissue delineation. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Nuclear imaging scan showing very good tissue delineation. It offers crisp overall image quality and sharply delineates the muscle and fat planes, vertebral margins and end plates, billiary radicals, renal calyces, aortic wall and papillary muscles of the heart. Scan performed on a Biograph Vision positron emission tomography/computed tomography (PET-CT) system from Siemens Healthineers.

Technology | PET-CT | June 05, 2018
June 5, 2018 — The U.S.
Emerging Trends in Nuclear Medicine
Feature | Nuclear Imaging | June 04, 2018 | By Jeff Zagoudis
Nuclear imaging and its various modalities have long played an important role in the diagnosis and treatment of numer
Overlay Init