News | PET Imaging | January 25, 2017

New PET Imaging Technique May Help Monitor Neurological Disease Progression

Researchers use radiotracer that binds to mature olfactory sensory neurons to quantify neuronal populations

January 25, 2017 — In work published this week in the Journal of Clinical Investigation (JCI), a team led by Jacob Hooker at Harvard Medical School assessed GV1-57, a radiotracer that specifically binds to mature olfactory sensory neurons, as an approach for quantifying neuronal populations with positron emission tomography (PET) imaging.

Olfactory neurons in the nasal cavity are the primary source of our sense of smell. Unlike many types of neurons, olfactory neurons are continuously generated throughout the adult lifespan. This uniquely high rate of neuronal birth and death makes olfactory neurons particularly sensitive to the detrimental effects of progressive neurodevelopmental and neurodegenerative disease. In Alzheimer's disease and Parkinson's disease, loss of the sense of smell often precedes classical symptoms of cognitive or motor dysfunction. Therefore, a technique that is able to non-invasively quantify the olfactory neuron population could provide important insights related to the diagnosis and progression of neurodevelopmental and neurodegenerative diseases.

Using GV1-57, researchers were able to detect neuron generation during rodent postnatal development as well as neuron degeneration in rodent models of aging and neurodegenerative disease. In an additional proof-of-concept experiment, they showed that GV1-57 maintained saturable binding in non-human primate nasal cavity, suggesting that this radiotracer may be useful for evaluating neurological disease in clinical settings.

For more information: www.jci.org

Van de Bittner, G.C., Riley, M.M., Cao, L., Ehses, J., et al. "Nasal neuron PET imaging quantifies neuron generation and degeneration," The Journal of Clinical Invesigation. Published Jan. 23, 2017. doi:10.1172/JCI89162

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
iSchemaView RAPID Technology Now Installed in More Than 500 Stroke Centers
News | Neuro Imaging | August 27, 2018
iSchemaView announced that more than 575 stroke centers in 22 countries have selected the RAPID advanced imaging...
Brain Study of 62,454 Scans Identifies Drives of Brain Aging
News | SPECT Imaging | August 27, 2018
In the largest known brain imaging study, scientists from five institutions evaluated 62,454 brain single photon...
Abnormal Protein Concentrations Found in Brains of Military Personnel With Suspected CTE

Researchers are using the tracer, which is injected into a patient, then seen with a PET scan, to see if it is possible to diagnose chronic traumatic encephalopathy in living patients. In this image, warmer colors indicate a higher concentration of the tracer, which binds to abnormal proteins in the brain. Credit UCLA Health.

News | PET Imaging | August 24, 2018
August 24, 2018 — In a small study of
Radiation Therapy Affects Event Recall for Children With Brain Tumors
News | Radiation Therapy | August 24, 2018
Children with certain types of brain tumors who undergo radiation treatment are less likely to recall the specifics of...