News | PET Imaging | August 19, 2016

New PET Imaging Technique Could Improve Understanding of Depression, Drug Treatments

Japanese study uses PET tracer to non-invasively assess neuron proliferation in areas of the brain known to be particularly affected by depression

PET, depression, neurogenesis, brain imaging, RIKEN Center for Life Science Technology study

August 19, 2016 — A new non-invasive positron emission tomography (PET) technique can obtain images of neuron proliferation in an area of the brain known to be particularly affected by depression. Scientists from the RIKEN Center for Life Science Technology (CLST) in Japan used the technique to observe this process, known as neurogenesis, in the subventricular zone and subgranular zone of the hippocampal dentate gyrus.

These two areas are known to be neurogenic regions, where neural stem cells give rise to new neurons throughout our lives. Hippocampal neurogenesis is known to be associated with depression and the effect of antidepressive medication, but it is also involved in learning and memory, so scientists are keen to find techniques that can monitor cell proliferation in the region. However, the process of neurogenesis is very hard to monitor non-invasively. It is possible using magnetic resonance imaging (MRI), but with MRI the tracers do not move into the brain effectively and must be injected directly into the brain fluid, making is invasive and difficult to perform.

PET is another method that has been used. Previously, attempts have been made to use a molecule called [18F]FLT as a marker for cell proliferation in the brain in PET, but unfortunately the difference in signal strength between regions with and without cell growth was small. "We were not exactly sure why this was happening," said Tamura, "but surmised that it is because the body actively pumps the molecule out of the brain through the blood-brain barrier, using active transport mechanisms. This means that it is difficult for [18F]FLT to accumulate in the brain in sufficient concentrations to allow effective imaging."

To test whether this was the case, they tried injecting rats with a drug called probenecid, which is known to inhibit the active transport of molecules like [18F]FLT outside of the brain. They were happy to see that the strategy worked. They found clear signals of neurogenesis in the two areas of the adult brain, and these signals were significantly decreased in the hippocampal dentate gyrus of rats that had been treated with corticosterone to trigger depression. When the rats were treated with an anti-depressive selective serotonin reuptake inhibitor, the amount of cell proliferation was shown to increase, demonstrating that the drugs were countering the loss of neurogenesis caused by the corticosterone.

According to Yosky Kataoka, M.D., Ph.D., who led the research team, "This is a very interesting finding, because it has been a longtime dream to find a non-invasive test that can give objective evidence of depression and simultaneously show whether drugs are working in a given patient. We have shown that it is possible, at least in experimental animals, to use PET to show the presence of depression and the effectiveness of drugs. Since it is known that these same brain regions are involved in depression in the human brain, we would like to try this technique in the clinic and see whether it turns out to be effective in humans as well."

For more information: www.riken.jp/en

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Check-Cap Announces Interim Results of European Study of C-Scan System Version 3
News | Colonoscopy Systems | September 04, 2018
Check-Cap Ltd. announced the interim results for its post-CE approval study of the C-Scan system Version 3, an...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
Rapid Cardiac MRI Technique May Cut Costs, Boost Care in Developing World
News | Magnetic Resonance Imaging (MRI) | August 29, 2018
A newly developed rapid imaging protocol quickly and cheaply diagnosed heart ailments in patients in Peru, according to...
iSchemaView RAPID Technology Now Installed in More Than 500 Stroke Centers
News | Neuro Imaging | August 27, 2018
iSchemaView announced that more than 575 stroke centers in 22 countries have selected the RAPID advanced imaging...
Brain Study of 62,454 Scans Identifies Drives of Brain Aging
News | SPECT Imaging | August 27, 2018
In the largest known brain imaging study, scientists from five institutions evaluated 62,454 brain single photon...