News | September 10, 2008

New MI Application Accelerates Pancreatic Cancer Detection

September 10, 2008 - Cellvizio in vivo cellular imaging technology is helping researchers detect early-stage pancreatic cancer, understand stem cell development and enhance the value of whole body imaging, according to three new animal studies being presented at the World Molecular Imaging Congress in Nice, France, held September 10-13, 2008.

According to results from two recently published studies on Cellvizio imaging of pancreatic cancer, the targeted molecular imaging approach and vascular monitoring method developed, respectively, by Ken Young Lin and colleagues at the Center for Molecular Imaging Research in Boston and Johannes von Burstin and colleagues at the Technical University of Munich.

The Cellvizio system, by Mauna Kea Technologies, provides microscopic visualization of mucosal tissue and improves clinical outcomes by increasing the diagnostic yield of existing endoscopic procedures. The growing in vivo cellular imaging market enabling physicians to visualize, diagnose and treat pathologies that can not be seen using other imaging techniques.

These methods promise to substantially increase the detection rates of early-stage pancreatic cancer. Because early diagnosis and therapy response evaluation are the prerequisite for curative surgery, the presented translational results offer the prospect of improving overall survival of pancreatic cancer patients. The first study was published in the July 2008 issue of Translational Oncology and the second appeared in the August 15 issue of International Journal of Cancer.

A promising technique for in vivo tracking of somatic stem cells and could lead to valuable insights for improving the success of bone marrow transplants.Daniel Lewandowski and colleagues from the French Atomic Energy Commission in Fontenay aux roses, France, demonstrated that with Cellvizio they were able to view live in vivo the cellular dynamics of somatic stem cell development without interfering in the process.

The connection between cancer and blot clots may also be clearer for researchers. Using Cellvizio, Grace Thomas and colleagues from the Center of Research in Biological Oncology and Oncopharmacology in Marseille, France, demonstrated that the development of a cancerous tumor directly influences kinetics of blood clot formation in vivo. Through in vivo cellular imaging of platelets and leukocytes with Cellvizio, they were able to observe that times to blockage of veins and arteries were all significantly reduced in mice developing a tumor in comparison with those observed in control mice. These results may provide insights on how to prevent the risk of blood clot complications associated with cancer.

Carine Pestourie and colleagues from the French Atomic Energy Commission in France showed that the combination of whole body imaging systems such as Positron Emission Tomography (PET) and Cellvizio provides a new tool to monitor quantitatively and dynamically the in vivo distribution of compounds, such as Quantum Dots, from whole body to cellular scales with low invasiveness. Such a combination could be used in the future to better diagnose human pathologies.

For more information: www.cellvizio.com

Related Content

Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
Feature | PET Imaging | November 07, 2018 | By Greg Freiherr
Positron emission tomography (PET) is getting ready to venture outside oncology, cardiology and mainstream neurology....
Podcast | PET Imaging | November 07, 2018
PET is getting ready to venture outside oncology, cardiology and mainstream neurology.
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....
Huntsman Cancer Institute Installs First Preclinical nanoScan 3T PET/MRI in U.S.
News | PET-MRI | October 10, 2018
The Center for Quantitative Cancer Imaging at Huntsman Cancer Institute (HCI) at the University of Utah in Salt Lake...
Technology and Radionucleotide Development Will Fuel Mobile Gamma Camera Adoption
News | Nuclear Imaging | September 27, 2018
Advancements in healthcare technology, particularly in the surgery category, have led to an increasing adoption of...
Bruker Introduces New High-Performance Preclinical PET/CT Si78 System
Technology | PET-CT | September 26, 2018
September 26, 2018 — Bruker recently announced the introduction of the new preclinical...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...