News | June 26, 2015

New Imaging Technique Could Make Brain Tumor Removal Safer, More Effective

Johns Hopkins study uses optical coherence tomography to differentiate between cancerous and healthy tissue

brain tumors, optical coherence tomography, OCT, Johns Hopkins

An illustration of a new technique using optical coherence tomography that could help surgeons differentiate a human brain tumor, red, from surrounding noncancerous tissue, green. Image courtesy of Carmen Kut, Jordina Rincon-Torroella, Xingde Li and Alfredo Quninones-Hinojosa/Johns Hopkins Medicine.

June 26, 2015 - When removing a tumor, neurosurgeons walk a tightrope as they try to take out as much of the cancer as possible while keeping crucial brain tissue intact - and visually distinguishing the two is often impossible. Now Johns Hopkins researchers report they have developed an imaging technology that could provide surgeons with a color-coded map of a patient's brain showing which areas are and are not cancer.

A summary of the research appears June 17 in Science Translational Medicine.

"As a neurosurgeon, I'm in agony when I'm taking out a tumor. If I take out too little, the cancer could come back; too much, and the patient can be permanently disabled," said Alfredo Quinones-Hinojosa, M.D., a professor of neurosurgery, neuroscience and oncology at the Johns Hopkins University School of Medicine and the clinical leader of the research team. "We think optical coherence tomography has strong potential for helping surgeons know exactly where to cut."

First developed in the early 1990s for imaging the retina, optical coherence tomography (OCT) operates on the same echolocation principle used by bats and ultrasound scanners, but it uses light rather than sound waves, yielding a higher-resolution image than does ultrasound. One unique feature of OCT is that, unlike X-ray, computed tomography (CT) scans or positron emission tomography (PET) scans, it delivers no ionizing radiation to patients.

For the past decade, research groups around the globe - including a group at Johns Hopkins led by Xingde Li, Ph.D., a professor of biomedical engineering - has been working to further develop and apply the technology to other organs beyond the relatively transparent eye. Carmen Kut, an M.D./Ph.D. student working in Li's lab, thought OCT might provide a solution to the problem of separating brain cancers from other tissue during surgery.

Working with Li, Quinones-Hinojosa and other collaborators, Kut first built on the idea that cancers tend to be relatively dense, which affects how they scatter and reflect lightwaves. The team tried for three years to build their technique on this principle. Eventually, the researchers figured out that a second special property of brain cancer cells - that they lack the so-called myelin sheaths that coat healthy brain cells - had a greater effect on the OCT readings than did density.

Once they had found the characteristic OCT "signature" of brain cancer, the team devised a computer algorithm to process OCT data and, nearly instantaneously, generate a color-coded map with cancer in red and healthy tissue in green. "We envision that the OCT would be aimed at the area being operated on, and the surgeon could look at a screen to get a continuously updated picture of where the cancer is and isn't," Li said.

So far, said Kut, the team has tested the system on fresh human brain tissue removed during surgeries and in surgeries to remove brain tumors from mice. The researchers hope to begin clinical trials in patients this summer.

If those trials are successful and the system goes to market, it will be a big step up from imaging technologies now available during surgeries, said Quinones-Hinojosa. "Ultrasound has a much lower resolution than OCT, and MRI scanners designed to be wheeled over a patient on the operating table cost several millions of dollars each - and require an extra hour of operating room time to obtain a single image," he said. By comparison, the team anticipates that the cost of an OCT-based system would run in the hundreds of thousands of dollars.

The system can potentially be adapted to detect cancers in other parts of the body, Kut said. She is working on combining OCT with a different imaging technique that would detect blood vessels to help surgeons avoid cutting them.

For more information: www.hopkinsmedicine.org

Related Content

Videos | Interventional Radiology | January 11, 2019
Julius Chapiro, M.D., research faculty member and an...
AI Approach Outperformed Human Experts in Identifying Cervical Precancer
News | Digital Pathology | January 10, 2019
January 10, 2019 — A research team led by investigators from the National Institutes of Health and Global Good has de
Artificial intelligence, also called deep learning and machine learning, was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting.

Artificial intelligence was the hottest topic at the 2018 Radiological Society of North America (RSNA)) meeting, which included a large area with its own presentation therater set asside for AI vendors.

Feature | Artificial Intelligence | January 10, 2019 | Dave Fornell, Editor
Hands down, the hottest topic in radiology the past two years has been the implementation of...
Heart Attack, Stroke Risks Increase Leading Up to Cancer Diagnosis
News | Cardio-oncology | December 21, 2018
Older adults with cancer are more likely to have had a heart attack or stroke in the months prior to their cancer...
Opto-Acoustic Imaging Helps Differentiate Breast Cancer Molecular Subtypes
News | Ultrasound Women's Health | December 20, 2018
Seno Medical Instruments Inc. (Seno Medical) reported results of a study demonstrating that morphologic and functional...
YITU Releases AI-Based Cancer Screening Solutions at RSNA 2018
News | Artificial Intelligence | December 06, 2018
Chinese artificial intelligence (AI) healthcare company YITU healthcare released two brand-new products, Intelligent...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
University of Missouri Research Reactor First U.S. I-131 Supplier in 30 Years

MURR is the only supplier of I 131 in the United States and the first U.S. supplier since the 1980s. Image courtesy of University of Missouri

News | Radiopharmaceuticals and Tracers | November 13, 2018
The University of Missouri Research Reactor (MURR) recently shipped its first batch of Iodine-131 (I-131), a...
News | Advanced Visualization | November 13, 2018
Canon Medical Systems USA and Applied Radiology will host a pair of expert-led forums in high-resolution imaging and...
Charles Ananian, M.D.

Charles Ananian, M.D.

Sponsored Content | Case Study | Digital Radiography (DR) | November 07, 2018
Whether it’s a premature baby or a critically ill child, treating little patients is a huge responsibility.