News | Radiation Therapy | October 06, 2016

New Data on Elekta's MR-Linac Presented at ASTRO 2016

Multiple presentations highlight clinical potential of MR-linac in a variety of cancers and demonstrate the need to address intra-session motion

October 6, 2016 — Elekta announced recently that its high-field magnetic resonance linear accelerator (MR-linac) was the focus of multiple presentations at the American Society for Radiation Oncology (ASTRO) 2016 Annual Meeting, held Sept. 25 – 28 in Boston. Additional abstracts presented by members of Elekta’s MR-linac Consortium also highlighted the need for adaptation of radiation therapy to address moving tumors and nearby organs during treatment sessions. Naturally occurring physiological movements currently limit the ability to conform the treatment to the target and increase exposure of radiation to healthy tissues.

Elekta’s MR-linac will integrate an advanced linear accelerator and a 1.5 Tesla magnetic resonance imaging (MRI) system. Combined, these systems will allow for simultaneous radiation therapy delivery and high-field MR tumor monitoring.

A joint session of ASTRO and the European Society for Radiation Oncology (ESTRO) highlighted the potential for adaptive imaging in radiation therapy during a session titled “In Room Adaptive Imaging with a Focus on MRI.”  Elekta’s MR-linac was featured in two presentations during this session:

  • “Linac-based MR Device”; Christopher Schultz, M.D., FACR, professor in the Department of Radiation Oncology at Froedert and Medical College of Wisconsin. This presentation discussed strategies for integrating MR-linac into current RT protocols and provided an overview of the development plan that the Elekta MR-linac Consortium is undertaking in order to generate the clinical, physics and quality control data that will be essential for developing and realizing the full clinical potential of MR-linac technology.
  • “MRI Linac: Physics Perspective”; Bas Raaymakers, Ph.D., professor in the Department of Radiotherapy at University Medical Center Utrecht. This presentation highlighted the potential to leverage the power of MR-linac technology to move from pre-treatment planning to online plan adaptation and, ultimately, to real-time plan adaptation. Raaymakers also discussed the need for novel quality assurance procedures for MR-linac devices, patients and workflow.

Additional key findings related to the MR-linac Consortium’s development of MR-linac presented at the conference include:

  • Abdominal organ motion is complex and can occur despite motion management strategies. Abstract #3708: “Complex Abdominal Organ Motion Assessed from MRI”; Eenas Omari, Ph.D., postdoctoral fellow in the Department of Radiation Oncology at Medical College of Wisconsin;
  • Substantially improves targeting and lowers radiation dose to normal breast tissue in patients undergoing pre-operative partial breast irradiation. Abstract #3695: “Dosimetric Feasibility of Pre-operative Partial Breast Irradiation in Prone Position Using MR-linac” ; Phil Prior, Ph.D., medical physicist in the Department of Radiation Oncology at Medical College of Wisconsin;
  • Clinically acceptable treatment plans for patients with locally advanced non-small cell lung cancer can be created. Abstract #3150: “Dosimetric Implications for Radical Radiotherapy on the MR-linac (MRL) in Locally Advanced Non-small Cell Lung Cancer (LA NSCLC)”; Hannah Bainbridge, M.D., clinical fellow lung team, The Institute of Cancer Research, Sutton, United Kingdom, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom;
  • Online adaptive replanning is feasible for prostate cancer radiation therapy. Abstract #3639: “A Hybrid Adaptive Replanning Approach for Prostate SBRT”; Ozgur Ates, Ph.D., postdoctoral fellow in the Department of Radiation Oncology at Medical College of Wisconsin; and
  • An automated quality assurance (QA) tool can quickly identify contour errors from auto-segmentation and may have utility in online adaptive replanning. Abstract #3638 “Implementation of a Machine-learning Based Automatic Contour QA Tool for Online Adaptive Radiotherapy of Prostate Cancer” ; Jing Qiao Zhang, Ph.D., postdoctoral fellow in the Department of Radiation Oncology at Medical College of Wisconsin.

 

Several additional presentations described the potential for MR-linac and adaptive therapy to enable dose painting — the precise delivery of varying doses of radiation to specific regions within a tumor in order to account for differences in cell type, location and density from one part of the tumor to another.

Elekta’s MR-linac is a work in progress and not available for sale or distribution.

For more information: www.elekta.com

Related Content

Ingenia Ambition X 1.5T MR. This innovation is the latest advance in the Ingenia MRI portfolio, which comprises fully-digital MRI systems, healthcare informatics and a range of maintenance and life cycle services for integrated solutions that empower a faster, smarter, and simpler path to enabling a confident diagnosis
News | Magnetic Resonance Imaging (MRI) | September 14, 2018
Philips, a global leader in health technology, launched the Ingenia Ambition X 1.5T MR.
Amar Kishan, M.D.

Amar Kishan, M.D.

News | Prostate Cancer | September 11, 2018
UCLA researchers have discovered that a combination of high doses of...
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Videos | Radiation Therapy | September 07, 2018
A discussion with Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke University Clinical Imaging Physics Gr
Boston Scientific to Acquire Augmenix Inc.
News | Patient Positioning Radiation Therapy | September 07, 2018
Boston Scientific has entered into a definitive agreement to acquire Augmenix Inc., a privately-held company which has...
Sponsored Content | Case Study | Magnetic Resonance Imaging (MRI) | September 07, 2018 | By Sabine Sartoretti, M.D.
As soon as the Compressed SENSE technology became available to the MRI team at Kantonsspital Winterthur (Switzerland),...

Image courtesy of Philips Healthcare

Feature | Magnetic Resonance Imaging (MRI) | September 06, 2018 | By Melinda Taschetta-Millane
According to the Prescient & Strategic Intelligence report, “Global Magnetic Resonance Imaging (MRI) Market Size,...
Brain Iron Levels May Predict Multiple Sclerosis Disabilities
News | Neuro Imaging | August 31, 2018
A new, highly accurate magnetic resonance imaging (MRI) technique can monitor iron levels in the brains of multiple...
Study Finds Multiple Sclerosis Drug Slows Brain Shrinkage

An NIH-funded clinical trial suggested that the anti-inflammatory drug ibudilast may slow brain shrinkage caused by progressive MS. Image courtesy of Robert J. Fox, M.D., Cleveland Clinic.

News | Neuro Imaging | August 30, 2018
August 30, 2018 — Results from a clinical...
Non-Canonical Strategy May Improve Cancer Radiotherapy
News | Radiation Therapy | August 29, 2018
August 29, 2018 — Although the success or failure of...
Overlay Init