News | Magnetic Resonance Imaging (MRI) | March 21, 2017

MRI Scans May Help Predict Which Children Will Recover Faster From Brain Injury

Diffusion-weighted MRI reveals large percentage of group with slow transfer time post-injury, which significantly impacted test scores

diffusion weighted MRI, children, traumatic brain injury, TBI recovery, Neurology journal study

March 21, 2017 — A new imaging biomarker may help predict which children will take longer to recover from a traumatic brain injury (TBI), according to a preliminary study published online in Neurology.

“Traumatic brain injury is a leading cause of disability in children, but it’s very difficult to predict long-term outcome and which kids might need more aggressive treatment,” said study author Emily L. Dennis, Ph.D., of the University of Southern California in Los Angeles. “While the severity of the injury certainly plays a role in this, there’s still a lot of uncertainty — you frequently have two patients with similar injuries who have different recoveries.”

The study involved 21 children ages eight to 18 that were in a pediatric intensive care unit at one of four hospitals in Los Angeles County with a moderate to severe traumatic brain injury. Causes of the injuries included falls from skateboards, scooters and bikes, motor vehicle-pedestrian accidents and motor vehicle accidents with children as passengers. The children were compared to 20 children of the same age who had not had a brain injury.

All of the participants were given special magnetic resonance imaging (MRI) scans, called diffusion-weighted MRI, about two to five months after the injury and again about a year later. They also took tests of thinking and memory skills. The kids also had electroencephalograms (EEGs) while they were completing a computerized pattern-matching task to look at how quickly information is transferred from one hemisphere of the brain to the other across the corpus callosum, which is a collection of white matter that connects the two halves of the brain. Previous studies have shown that both children and adults have slow transfer times right after a traumatic brain injury.

The study found that a few months after injury, half of the children with TBI had slow transfer time, while the other half were in the normal range and did not differ from the healthy kids.

The TBI-slow transfer time group also had disruptions to the white matter that got worse in the year between the first and second scans, while scans of the TBI-normal transfer time group showed no significant differences from the scans of the healthy kids. “The TBI-slow transfer time group showed progressive decline during this period, while the other group showed signs of recovery,” Dennis said.

In the tests of thinking and memory skills, the kids in the TBI-slow transfer time group had significantly worse scores than the healthy kids, while those in the TBI-normal transfer time group had scores between the two groups.

“The finding in this study that there is degeneration of white matter in about half of the children with moderate to severe TBI during the first 16 months after an injury should stimulate attempts to understand why this is happening so that treatments may be developed to lessen this progressive decline in white matter,” said Dennis. She noted that the study was small, and the results need to be confirmed with larger studies.

“This study is an important step forward to identifying a functional biomarker that may predict the trajectory of TBI recovery,” said Bradley L. Schlaggar, M.D., Ph.D., of Washington University School of Medicine in St. Louis, Mo., and a member of the American Academy of Neurology, who wrote an editorial accompanying the study. “Success in confirming these results would be transformative for the field. We need tools that will allow us to make individual predictions so we can make the best decisions about treatment and how to educate and counsel our patients and their families.”

The study was supported by the National Institutes of Health, UCLA Brain Injury Research Center, UCLA Steve Tisch BrainSPORT Program, Easton Foundation and UCLA Staglin IMHRO Center for Cognitive Neuroscience.

For more information: www.neurology.org

Related Content

Mobile Stroke Unit Gets Patients Quicker Treatment Than Traditional Ambulance

Image courtesy of UTHealth McGovern Medical School

News | Stroke | August 16, 2019
Every second counts for stroke patients, as studies show they can lose up to 27 million brain cells per minute....
ADHD Medication May Affect Brain Development in Children

Images of regions of interest (colored lines) in the white matter skeleton representation. Data from left and right anterior thalamic radiation (ATR) were averaged. Image courtesy of C. Bouziane et al.

News | Neuro Imaging | August 16, 2019
A drug used to treat attention-deficit/hyperactivity disorder (ADHD) appears to affect development of the brain’s...
Profound Medical Receives U.S. FDA 510(k) Clearance for Tulsa-Pro
Technology | Interventional Radiology | August 16, 2019
Profound Medical Corp. announced it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to...
First Patient Enrolled in World's Largest Brain Cancer Clinical Trial
News | Radiation Therapy | August 15, 2019
Henry Ford Cancer Institute is first-in-the-world to enroll a glioblastoma patient in the GBM AGILE Trial (Adaptive...
Efficacy of Isoray's Cesium Blu Showcased in Recent Studies
News | Brachytherapy Systems | August 14, 2019
August 14, 2019 — Isoray announced a trio of studies recently reported at scientific meetings and published in medica
Imago Systems Announces Collaboration With Mayo Clinic for Breast Imaging

Image courtesy of Imago Systems

News | Mammography | August 14, 2019
Image visualization company Imago Systems announced it has signed a know-how license with Mayo Clinic. The multi-year...
Artificial Intelligence Could Yield More Accurate Breast Cancer Diagnoses
News | Artificial Intelligence | August 13, 2019
University of California Los Angeles (UCLA) researchers have developed an artificial intelligence (AI) system that...
Synaptive Medical Launches Modus Plan With Automated Tractography Segmentation
Technology | Neuro Imaging | August 07, 2019
Synaptive Medical announced the U.S. launch and availability of Modus Plan featuring BrightMatter AutoSeg. This release...
Contrast Use in First Transthoracic Echocardiogram for Heart Failure Reduces Repeat Testing
News | Cardiovascular Ultrasound | August 07, 2019
Heart failure is the fourth most common cause for all admission to U.S. hospitals, and it is the most common reason for...