News | Magnetic Resonance Imaging (MRI) | March 21, 2017

MRI Scans May Help Predict Which Children Will Recover Faster From Brain Injury

Diffusion-weighted MRI reveals large percentage of group with slow transfer time post-injury, which significantly impacted test scores

diffusion weighted MRI, children, traumatic brain injury, TBI recovery, Neurology journal study

March 21, 2017 — A new imaging biomarker may help predict which children will take longer to recover from a traumatic brain injury (TBI), according to a preliminary study published online in Neurology.

“Traumatic brain injury is a leading cause of disability in children, but it’s very difficult to predict long-term outcome and which kids might need more aggressive treatment,” said study author Emily L. Dennis, Ph.D., of the University of Southern California in Los Angeles. “While the severity of the injury certainly plays a role in this, there’s still a lot of uncertainty — you frequently have two patients with similar injuries who have different recoveries.”

The study involved 21 children ages eight to 18 that were in a pediatric intensive care unit at one of four hospitals in Los Angeles County with a moderate to severe traumatic brain injury. Causes of the injuries included falls from skateboards, scooters and bikes, motor vehicle-pedestrian accidents and motor vehicle accidents with children as passengers. The children were compared to 20 children of the same age who had not had a brain injury.

All of the participants were given special magnetic resonance imaging (MRI) scans, called diffusion-weighted MRI, about two to five months after the injury and again about a year later. They also took tests of thinking and memory skills. The kids also had electroencephalograms (EEGs) while they were completing a computerized pattern-matching task to look at how quickly information is transferred from one hemisphere of the brain to the other across the corpus callosum, which is a collection of white matter that connects the two halves of the brain. Previous studies have shown that both children and adults have slow transfer times right after a traumatic brain injury.

The study found that a few months after injury, half of the children with TBI had slow transfer time, while the other half were in the normal range and did not differ from the healthy kids.

The TBI-slow transfer time group also had disruptions to the white matter that got worse in the year between the first and second scans, while scans of the TBI-normal transfer time group showed no significant differences from the scans of the healthy kids. “The TBI-slow transfer time group showed progressive decline during this period, while the other group showed signs of recovery,” Dennis said.

In the tests of thinking and memory skills, the kids in the TBI-slow transfer time group had significantly worse scores than the healthy kids, while those in the TBI-normal transfer time group had scores between the two groups.

“The finding in this study that there is degeneration of white matter in about half of the children with moderate to severe TBI during the first 16 months after an injury should stimulate attempts to understand why this is happening so that treatments may be developed to lessen this progressive decline in white matter,” said Dennis. She noted that the study was small, and the results need to be confirmed with larger studies.

“This study is an important step forward to identifying a functional biomarker that may predict the trajectory of TBI recovery,” said Bradley L. Schlaggar, M.D., Ph.D., of Washington University School of Medicine in St. Louis, Mo., and a member of the American Academy of Neurology, who wrote an editorial accompanying the study. “Success in confirming these results would be transformative for the field. We need tools that will allow us to make individual predictions so we can make the best decisions about treatment and how to educate and counsel our patients and their families.”

The study was supported by the National Institutes of Health, UCLA Brain Injury Research Center, UCLA Steve Tisch BrainSPORT Program, Easton Foundation and UCLA Staglin IMHRO Center for Cognitive Neuroscience.

For more information: www.neurology.org

Related Content

FDA Clears Advancements for Viewray MRIdian Radiation Therapy System
Technology | Image Guided Radiation Therapy (IGRT) | February 21, 2019
February 21, 2019 — ViewRay Inc. received 510(k) clearance from the U.S.
MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Videos | Radiation Therapy | February 15, 2019
ITN Associate Editor Jeff Zagoudis speaks with Vinai Gondi, M.D., director of research and CNS neuro-oncology at the
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e
Videos | Angiography | February 08, 2019
This is an example of an arterial venous malformation (AVM) in the brain imaged on a...
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
ASE Releases Guidelines for Transesophageal Echo in Congenital Heart Disease
News | Ultrasound Transesophageal echo (TEE) | February 05, 2019
February 5, 2019 – The American Society of Echocardiography (ASE) released a new document that provides a comprehensi
Medtronic Recalls Synergy Cranial Software and Stealth Station S7 Cranial Software
News | Procedure Navigation Systems | February 05, 2019
Medtronic is recalling the Synergy Cranial Software and StealthStation S7 Cranial Software used with the StealthStation...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...