News | November 26, 2013

MR Spectroscopy Shows Differences in Brains of Preterm Infants

imaging rsna 2013 mri systems women's health

MRI uses the signal from hydrogen protons of water to reconstruct an image. 1H MRS uses the signal from the protons of chemicals to generate a spectrum (biochemical fingerprint).

imaging rsna 2013 mri systems women's health

Axonal development in parietal white matter.

Axonal development in parietal white matter.

Axonal development in parietal white matter.

Axonal development in parietal white matter.

November 26, 2013 — Premature birth appears to trigger developmental processes in the white matter of the brain that could put children at higher risk of problems later in life, according to a study being presented at the Radiological Society of North America Annual Meeting (RSNA 2013) in Chicago.
 
Preterm infants — generally those born 23 to 36 weeks after conception, as opposed to the normal 37- to 42-week gestation — face an increased risk of behavioral problems, ranging from impulsiveness and distractibility to more serious conditions like autism and attention deficit hyperactivity disorder (ADHD).
 
"In the United States, we have approximately 500,000 preterm births a year," said Stefan Blüml, Ph.D., director, New Imaging Technology Lab, Children's Hospital Los Angeles and associate professor of research radiology, University of Southern California, Los Angeles (UCLA). "About 60,000 of these babies are at high risk for significant long-term problems, which means that this is a significant problem with enormous costs."
 
Blüml and colleagues have been studying preterm infants to learn more about how premature birth might cause changes in brain structure that may be associated with clinical problems observed later in life. Much of the focus has been on the brain's white matter, which transmits signals and enables communication between different parts of the brain. While some white matter damage is readily apparent on structural magnetic resonance imaging (MRI), Blüml's group has been using magnetic resonance spectroscopy (MRS) to look at differences on a microscopic level.
 
In this study, the researchers compared the concentrations of certain chemicals associated with mature white matter and gray matter in 51 full-term and 30 preterm infants. The study group had normal structural MRI findings, but MRS results showed significant differences in the biochemical maturation of white matter between the term and preterm infants, suggesting a disruption in the timing and synchronization of white and gray matter maturation. Gray matter is the part of the brain that processes and sends out signals.
 
"The road map of brain development is disturbed in these premature kids," Blüml said. "White matter development had an early start and was ‘out of sync' with gray matter development."
 
This false start in white matter development is triggered by events after birth, according to Blüml.
 
"This timeline of events might be disturbed in premature kids because there are significant physiological switches at birth, as well as stimulatory events, that happen irrespective of gestational maturity of the newborn," he said. "The most apparent change is the amount of oxygen that is carried by the blood."
 
According to Blüml, the amount of oxygen delivered to the fetus's developing brain in utero is quite low, and our brains have evolved to optimize development in that low oxygen environment. However, when infants are born, they are quickly exposed to a much more oxygen-rich environment.
 
"This change may be something premature brains are not ready for," he said.
 
While this change may cause irregularities in white matter development, Blüml noted that the newborn brain has a remarkable capacity to adapt or even "rewire" itself — a concept known as plasticity. Plasticity not only allows the brain to govern new skills over the course of development, like learning to walk and read, but could also make the brains of preterm infants and young children more responsive to therapeutic interventions, particularly if any abnormalities are identified early.
 
"Our research points to the need to better understand the impact of prematurity on the timing of critical maturational processes and to develop therapies aimed at regulating brain development," said Blüml.
 
For more information: www.rsna.org

Related Content

Technology | Focused Ultrasound Therapy | June 19, 2018
EDAP TMS SA has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its Focal One device for...
Clinical Trial Testing Topical Gel to Reduce Breast Density
News | Breast Density | June 19, 2018
Women with dense breast tissue soon might be adding a new product to their skincare routine to help them fight breast...
Elekta Unity High-Field MR-Linac Receives CE Mark
News | Image Guided Radiation Therapy (IGRT) | June 18, 2018
Elekta announced that its Elekta Unity magnetic resonance radiation therapy (MR/RT) system has received CE mark,...
New U.S. Tariffs on Chinese Goods Include Imaging Equipment
News | Radiology Business | June 15, 2018 | Jeff Zagoudis, Associate Editor
The Office of the U.S. Trade Representative (USTR) released the much-anticipated list of Chinese-manufactured goods...
California Women In Favor of Extending State's Breast Density Inform Law
News | Breast Density | June 15, 2018
A recent survey of California women found that 95 percent of respondents want the state’s breast density inform law to...
Washington University in St. Louis Begins Clinical Treatments With ViewRay MRIdian Linac
News | Image Guided Radiation Therapy (IGRT) | June 14, 2018
June 14, 2018 — The Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in S
Women More Likely to Use Other Preventive Health Services Following Mammography
News | Mammography | June 13, 2018
Medicare beneficiaries who undergo breast cancer screening with mammography are more likely than unscreened women to...
Reduced hippocampal volume on MRI

This figure shows reduced hippocampal volume over the course of 6 years as seen on progressive volumetric analysis and also coronal MRI evaluations (arrows).Progressive volume loss in the mesial temporal lobe on MRI is a characteristic imaging feature of AD. This patient was a case of Alzheimer’s Dementia.

 

News | Neuro Imaging | June 12, 2018
According to a UCLA Medical Center study, a new technology shows the potential to help doctors better determine when...
How AI and Deep Learning Will Enable Cancer Diagnosis Via Ultrasound

The red outline shows the manually segmented boundary of a carcinoma, while the deep learning-predicted boundaries are shown in blue, green and cyan. Copyright 2018 Kumar et al. under Creative Commons Attribution License.

News | Ultrasound Imaging | June 12, 2018 | Tony Kontzer
June 12, 2018 — Viksit Kumar didn’t know his mother had...
High Prevalence of Atherosclerosis Found in Lower Risk Patients
News | Magnetic Resonance Imaging (MRI) | June 08, 2018
Whole-body magnetic resonance angiography (MRA) found a surprisingly high prevalence of atherosclerosis in people...
Overlay Init