News | June 20, 2011

Molecular Imaging Detects Ischemic Heart Disease in Diabetics

June 8, 2011 – Research introduced at the Society of Nuclear Medicine's 58th annual meeting this week may lead to much-needed cardiovascular disease screening for diabetic patients at risk of ischemic heart disease. The disorder is marked by significantly reduced blood flow in the heart. Ischemia of the myocardium can signal diminished oxygenation of the heart tissue and trigger a heart attack if left untreated.

“Diabetes is a serious risk factor for ischemic heart disease,” says Kenji Fukushima, M.D., Ph.D., Tokyo Women's Medical University, Tokyo, Japan. “Most diabetic patients do not exhibit signs of myocardial ischemia and may be on course toward major cardiac events without any red alert. Molecular imaging could potentially provide an effective screening tool for at-risk diabetic patients suspected of having ischemic heart disease.”

According to the American Diabetes Association, approximately 25.8 million children and adults — more than 8 percent of the population — are diabetic and at least twice as likely as nondiabetics to develop heart disease. The link is attributed to the damaging effects of high blood sugar levels on blood vessels. Persistently high blood sugar levels can lead to inflammatory disease and atherosclerosis, or thickening of the blood vessel walls, and eventually myocardial ischemia.

The standard molecular imaging technique is stress myocardial perfusion imaging, which provides information about blood flow in the heart at rest and under stress, either with exercise or with drugs that recreate the physiological changes associated with exercise. However, stress testing may be unsafe for patients at risk of complications or cardiac events. This study explores a method of molecular imaging called myocardial fatty acid metabolism imaging, which may prove to be a safer alternative for patients suspected of having ischemic heart disease.

During the study, a total of 191 diabetic patients were injected with I-123 beta-methyl iodophenyl pentadecanoic acid (BMIPP), a medical isotope bound with an agent that is metabolized by the heart in order to image the fatty acid uptake of heart muscle cells. Once injected, patients were imaged using dual single photon emission computed tomography (SPECT), a molecular imaging technology that captures both physiological and anatomical information about the body. The objective of the study was to test the predictive value of this imaging procedure for major cardiac events, like fatal heart attack, and minor cardiac events, such as hospitalization due to heart failure. Followup of the study revealed 13 major and 25 minor events, proving that I-123 BMIPP is safe and beneficial for predicting the likelihood of cardiac events in diabetic patients suspected of having myocardial ischemia.

This is the first study of its kind detecting ischemic heart disease in diabetic patients without any history of myocardial disease. If moved into clinical use, imaging both cell metabolism and blood flow through the heart could help physicians detect myocardial ischemia and make clinical decisions that could save lives.

For more information: www.snm.org

Related Content

Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it is critical for overall treatment success and saving patients' lives. Diffusion-weighted magnetic resonance imaging (DWI) may be used to detect a malignancy in various tissues and organs. It has the advantage of providing insight into the diffusion of water molecules in body tissues without exposing patients to radiation.

DWI of the phantom with polyvinylpyrrolidone (PVP) solutions (b value 500 s/mm2). Image courtesy of Kristina Sergunova et al.

News | Magnetic Resonance Imaging (MRI) | June 02, 2020
June 2, 2020 — Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it
Nuclear Cardiology Optimistic About Return to Pre-COVID-19 Exam Levels. An American Society of Nuclear Cardiology (ASNC) member survey are confident nuclear cardiology volumes will return to pre-pandemic levels. #COVID19 #SARScov2
News | Nuclear Imaging | June 01, 2020
June 1, 2020 — While acknowledging the challenges their specialty is facing, more than two-thirds of respondents to a
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Remote reading of imaging studies on home picture archiving and communication systems (PACS) workstations can contribute to social distancing, protect vulnerable radiologists and others in the hospital, and ensure seamless interpretation capabilities in emergency scenarios, according to an open-access article published ahead-of-print by the American Journal of Roentgenology (AJR).

Srini Tridandapani, M.D., Ph.D.

News | PACS | May 21, 2020
May 21, 2020 — 
Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-

Figure 1: Examples of chest CT images of COVID-19 (+) patients and visualization of features correlated to COVID-19 positivity. For each pair of images, the left image is a CT image showing the segmented lung used as input for the CNN (convolutional neural network algorithm) model trained on CT images only, and the right image shows the heatmap of pixels that the CNN model classified as having SARS-CoV-2 infection (red indicates higher probability). (a) A 51-year-old female with fever and history of exposure to SARS-CoV-2. The CNN model identified abnormal features in the right lower lobe (white color), whereas the two radiologists labeled this CT as negative. (b) A 52-year-old female who had a history of exposure to SARS-CoV-2 and presented with fever and productive cough. Bilateral peripheral ground-glass opacities (arrows) were labeled by the radiologists, and the CNN model predicted positivity based on features in matching areas. (c) A 72-year-old female with exposure history to the animal market in Wuhan presented with fever and productive cough. The segmented CT image shows ground-glass opacity in the anterior aspect of the right lung (arrow), whereas the CNN model labeled this CT as negative. (d) A 59-year-old female with cough and exposure history. The segmented CT image shows no evidence of pneumonia, and the CNN model also labeled this CT as negative.  

News | Coronavirus (COVID-19) | May 19, 2020
May 19, 2020 — Mount Sinai researchers are the first in the country to use...
Now a research team — led by Tohoku University Professor, Wataru Yashiro — has developed a new method using intense synchrotron radiation that produces higher quality images within milliseconds.

How the bent crystal changes the direction of the X-rays. Image courtesy of Tohoku University

News | Computed Tomography (CT) | May 15, 2020
May 15, 2020 — Many will undergo a computed tomogr...
Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function.

Colored areas of the brain represent regions where the loss of brain synapses in people with early-stage Alzheimer’s was greater than people with normal cognitive function. Image courtesy of YaleNews.

News | PET Imaging | May 14, 2020
May 14, 2020 — New imaging technology allows scientists to see the widespread loss of brain synapses in early stages
Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol.

Experimental Protocol and Representative MRI of Brains at Various Key Points in That Protocol. (A) Experimental timeline. (B) Representative T2WI (using an 11.7T MRI) of the brain of a postnatal day (PND) 11 pup, 1 day after inducing left HII and prior to hNSC transplantation. Note the beginning of an increasingly intense “water signal” (white) on the left (“HII lesion”). (C) Representative T2WI (using an 11.7T MRI) 3 days post-HII, shortly after implantation of SPIO pre-labeled hNSCs into the contralateral cerebral ventricle (“Lateral Vent”). Note the “HII lesion” on the left becoming hyperintense (white) and the black signal void of the SPIO-labeled hNSCs in the lateral ventricle (black arrow). Red arrows denote the needle track. In contrast to what occurs in the intact brain (Figure S4), in a brain subjected to left HII, the implanted SPIO-labeled hNSCs (black signal void) (black arrow) migrate from the right (“R”) to the left (“L”) hemisphere to enter the lesion. (D and E) Shown here (using a 4.7T MRI) are SPIO-labeled hNSCs (black signal void) (black arrow) at 1 month post-implantation into the contralateral ventricle (D) and, in the same representative animal, at 3 months post-implantation (E)–stably integrated and surrounding a much-reduced residual lesion, with no interval enlargement of the graft or ventricles.

News | Magnetic Resonance Imaging (MRI) | May 13, 2020
May 13, 2020 — Scientists at Sanford Burnham Prebys Medical Discov...