News | June 19, 2013

Metabolic PET Imaging Provides Earlier Warning of Coronary Disease

Molecular imaging technique detects arterial disease in the heart earlier and in finer detail than other leading imaging methods

June 19, 2013 — Coronary artery disease (CAD) is one of the world’s most prevalent and silent killers. Positron emission tomography (PET), which images miniscule abnormalities in cellular metabolism, can tip off clinicians about cardiac disasters waiting to happen — including sudden death from a heart attack — better than standard angiography, researchers revealed at the Society of Nuclear Medicine and Molecular Imaging’s 2013 Annual Meeting.

“Using FDG PET we can easily detect changes that occur in the heart at the microscopic level — much sooner than when changes become evident in angiography, at the macroscopic level,” said Arun Sasikumar, M.D., MBBS, lead researcher from the department of nuclear medicine at the Post Graduate Institute of Medical Education and Research (PGIMER) based in Chandigarh, India. “By detecting the detrimental changes in the heart at an early stage, physicians can prescribe medications that can halt disease progression, thus preventing a devastating cardiac event such as heart attack or sudden cardiac death.”

There are several ways to detect CAD, including the use of angiography, which utilizes X-ray energy and contrast dye flushed through major arteries to reveal structural detail about the state of blood vessels, including instances of narrowing and reduced blood flow that develop from plaque build-up and scarring associated with atherosclerosis. Another major method is stress myocardial perfusion imaging (MPI), a molecular imaging technique that provides vital information about heart muscle viability. MPI stress tests tell clinicians about blood flow and aspects of heart function at different levels of stress by bringing patients up to a targeted percentage of their maximum heart rate using either exercise stress or pharmaceutical stress, which provokes effects on the heart similar to those of exercise. A third method is the use of the agent F-18 fluorodeoxyglucose (FDG), which is detected by PET. Injected FDG disperses through the heart and acts like glucose as an energy source for cardiac cells. This method clearly demonstrates actual heart function and blood flow before major narrowing, or stenosis, and reduced blood flow, or ischemia, are indicated on conventional angiographies.

For this study, researchers compared angiography with two molecular imaging methods, exercise stress MPI with the agent Tc-99m tetrofosmin and exercise stress F-18 FDG cardiac PET imaging, to see which performed best for CAD detection. A total of 45 patients with a mean age of 51 participated in the study. Each had some suspected CAD upon evaluation, but no history of heart attack. Every subject was prescribed dietary restrictions and underwent exercise stress tests on separate days, followed by an angiogram within a month.

Angiography was performed as a baseline imaging protocol for comparison between MPI and FDG PET. Abnormal angiograms were found for 27 patients, with at least one of their arteries narrowed by more than 50 percent. Disease staging was organized into three categories of single-, double- or triple-vessel disease.

Results of the comparison between angiograms and two molecular stress tests indicated that 17 patients had single-vessel disease and were better imaged by FDG PET imaging than by MPI. A total of five patients had double-vessel disease, and another five were found to have triple-vessel disease. Results comparing MPI and FDG PET for multivessel disease detection were similar, but the latter was far superior for single-vessel disease. FDG PET was shown to have 96 percent sensitivity while detecting less than 50 percent stenosis of coronary arteries, compared to about 56 percent sensitivity with MPI. Specificity, the method’s accuracy when detecting CAD at this level, was measured at 76 percent for FDG PET and 62 percent for MPI, proving that FDG PET catches earlier stages of disease.

“This research is extremely important because it opens up the possibility of using nuclear medicine in preventive cardiology,” said Sasikumar. “FDG PET imaging can detect ischemia at a very early stage, even before significant symptoms appear. This molecular imaging technique could potentially be used for initial CAD screening to help doctors better determine a patient’s cardiac risk and manage the care of these patients, who would otherwise be considered to have normal cardiovascular function.

Cardiac events occur about every 34 seconds in the United States, and every minute someone is estimated to die from heart disease, according to the American Heart Association. The Centers for Disease Control estimates that 600,000 people die annually of heart disease in the United States — one out of every four deaths. Coronary heart disease is considered to be the single most prevalent form of cardiovascular disease, killing more than 385,000 Americans every year.

For more information: www.snmmi.org

Related Content

Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
Novel PET Tracer Detects Small Blood Clots

PET images (MIP 0-60 min) of three Cynomolgus monkeys. Strong signals are detected at the sites where inserted catheters had roughened surfaces. Almost no other background signal is visible. Only accumulation in the gallbladder becomes visible at the bottom of the image. Credit: Piramal Imaging GmbH, Berlin Germany.

News | PET Imaging | July 07, 2017
July 7, 2017 — Blood clots in veins a

While subject No. 1 (left) was judged as positive for both the neuronal injury and the amyloid load biomarker, both Alzheimer's disease biomarkers were negative in subject No. 2 (right). Image courtesy of Henryk Barthel et al., University Hospital Leipzig, Leipzig, Germany

News | PET Imaging | June 14, 2017
More people die of Alzheimer's disease than prostate and breast cancer combined. Identifying the disease before major...
News | Clinical Study | June 09, 2017
The milestone Imaging Dementia — Evidence for Amyloid Scanning (IDEAS) Study is working with government and academic...
Lantheus and GE Healthcare Sign Agreement for Worldwide Development, Commercialization of Flurpiridaz F-18
News | Radiopharmaceuticals and Tracers | May 22, 2017
May 22, 2017 — Lantheus Holdings Inc., parent company of Lantheus Medical Imaging Inc., and GE Healthcare announced t
low-dose lung CT scan

An example of a low-dose CT scan of the lungs, showing lung cancer. Image courtesy of Toshiba.

Feature | Lung Cancer | May 05, 2017 | Alison Grimes
The term mesothelioma was coined in 1909, just a few years after the introduction of medical X-ray imaging.
Australian Team Finds New Method for Producing PET Radiotracers in Higher Radiochemical Yields
News | Radiopharmaceuticals and Tracers | April 28, 2017
April 28, 2017 — Researchers at the Australian Nuclear Science and Technology Organisation (ANSTO) have led the devel
Sponsored Content | Videos | Nuclear Imaging | April 28, 2017
David Wolinsky, M.D., director of nuclear cardiology at Cleveland Clinic Florida and past-president of the American S
News | Prostate Cancer | April 24, 2017
April 24, 2017 — Cancer Targeted Technology recently announced it is focusing on small molecules that target pivotal
PET
Feature | Imaging | April 11, 2017 | By Greg Freiherr
Positron emission tomography (PET) and other brain assessments
Overlay Init