News | Medical 3-D Printing | January 05, 2016

Materialise Partnering to Manufacture, Trial 3D-Printed Tracheal Splints

Splints will be constructed from bioresorbable technology platform licensed to Tissue Regeneration Systems, trial conducted with University of Michigan

Kaiba Gionfriddo, Materialise, TRS, University of Michigan, partnerships, 3D-printed tracheal splints

Kaibba Gionfriddo, one of the children suffering from TBM who was treated with a 3D-printed tracheal splint at C.S. Mott Children's Hospital at the University of Michigan

January 5, 2016 — In December, Materialise announced a partnership with Tissue Regeneration Systems (TRS) to manufacture 3D-printed tracheal splints for use in clinical trials Materialise will undertake with the University of Michigan in a separate exclusive licensing agreement. The company plans to ultimately offer the newly granted patent in the marketplace.

Materialise’s Mimics Innovation Suite was used to design the splint, which is constructed from a bioresorbable technology platform licensed to TRS by the University of Michigan in 2007. After several years refining fabrication methods, TRS received its first commercial product clearance from the U.S. Food and Drug Administration (FDA) in 2013.

Thanks to FDA approval for Expanded Access to an investigational medical device, the splints have already saved the lives of four infants suffering from tracheobronchomalacia (TBM), a life-threatening congenital airway disorder, since 2013.

About 1 in 2,200 babies are born with TBM, which causes the trachea to periodically collapse. The tracheal splint, developed to save the lives of these children, is made with a biopolymer called polycaprolactone, a biodegradable material that is gradually absorbed into the infant’s body tissue over time. Glenn Green, M.D., and Scott Hollister, Ph.D.,, of the University of Michigan used Materialise’s Mimics Innovation Suite to model and construct these splints using computed tomography (CT) scans of patient anatomy.

“This agreement is a critical step in our goal to make this treatment readily available for other children who suffer from this debilitating condition,” said Green.

“We have continued to evolve and automate the design process for the splints, allowing us to achieve in two days what used to take us up to five days to accomplish,” added Hollister, Ph.D., professor of biomedical engineering and mechanical engineering. “I feel incredibly privileged to be building products that surgeons can use to save lives.”

The U-M team hopes to next year open a clinical trial for 30 patients with similar conditions at C.S. Mott Children’s Hospital.

For more information: www.materialise.com

Related Content

News | Advanced Visualization | November 13, 2018
Canon Medical Systems USA and Applied Radiology will host a pair of expert-led forums in high-resolution imaging and...
Deaconess Health System Chooses Sectra as Enterprise Imaging Vendor
News | Enterprise Imaging | November 02, 2018
International medical imaging information technology (IT) and cybersecurity company Sectra will install its enterprise...
The OnSight 3D Extremity System captures weight-bearing 3D extremity exams.
Sponsored Content | Whitepapers | Advanced Visualization | October 24, 2018
The OnSight 3D Extremity System captures weight-bearing 3D extremity exams.
Enterprise imaging has been a hot topic in radiology and healthcare information technology (IT) circles for the last several years as medical image acquisition has moved beyond the exclusive purview of radiology.
Feature | Enterprise Imaging | October 03, 2018 | By Jeff Zagoudis
Enterprise imaging has been a hot topic in radiology and healthcare information technology (IT) circles for the last...
Brainlab and Magic Leap Partner in Digital Surgery
News | Advanced Visualization | September 28, 2018
September 28, 2018 — Brainlab announced a strategic development partnership with Florida-based Magic Leap, a develope
EOS Imaging Installs First Site in Mexico
News | Orthopedic Imaging | September 24, 2018
EOS imaging recently announced the first installation of an EOS system in Mexico, the largest Central American market,...
Artificial Intelligence Provides Faster, Clearer MRI Scans

A new artificial-intelligence-based approach to image reconstruction, called AUTOMAP, yields higher quality images from less data, reducing radiation doses for CT and PET and shortening scan times for MRI. Shown here are MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital

News | Artificial Intelligence | July 17, 2018
A research team with funding from the National Institute for Biomedical Imaging and Bioengineering (NIBIB) has...
iSchemaView Brings RAPID Imaging Platform to Australia and New Zealand
News | Stroke | July 13, 2018
iSchemaView has signed Diagnostic Imaging Australia (DIA) to be the exclusive distributor for the RAPID cerebrovascular...
3-D Imaging and Computer Modeling Capture Breast Duct Development

An image of a developing mammary duct. Image courtesy of Andrew Ewald.

News | Breast Imaging | June 28, 2018
A team of biologists has joined up with civil engineers to create what is believed to be the first 3-D computer model...
3D Systems Announces On Demand Anatomical Modeling Service
Technology | Medical 3-D Printing | June 18, 2018
3D Systems announced availability of its new On Demand Anatomical Modeling Service. This new service provides a wide...