News | Medical 3-D Printing | January 05, 2016

Materialise Partnering to Manufacture, Trial 3D-Printed Tracheal Splints

Splints will be constructed from bioresorbable technology platform licensed to Tissue Regeneration Systems, trial conducted with University of Michigan

Kaiba Gionfriddo, Materialise, TRS, University of Michigan, partnerships, 3D-printed tracheal splints

Kaibba Gionfriddo, one of the children suffering from TBM who was treated with a 3D-printed tracheal splint at C.S. Mott Children's Hospital at the University of Michigan

January 5, 2016 — In December, Materialise announced a partnership with Tissue Regeneration Systems (TRS) to manufacture 3D-printed tracheal splints for use in clinical trials Materialise will undertake with the University of Michigan in a separate exclusive licensing agreement. The company plans to ultimately offer the newly granted patent in the marketplace.

Materialise’s Mimics Innovation Suite was used to design the splint, which is constructed from a bioresorbable technology platform licensed to TRS by the University of Michigan in 2007. After several years refining fabrication methods, TRS received its first commercial product clearance from the U.S. Food and Drug Administration (FDA) in 2013.

Thanks to FDA approval for Expanded Access to an investigational medical device, the splints have already saved the lives of four infants suffering from tracheobronchomalacia (TBM), a life-threatening congenital airway disorder, since 2013.

About 1 in 2,200 babies are born with TBM, which causes the trachea to periodically collapse. The tracheal splint, developed to save the lives of these children, is made with a biopolymer called polycaprolactone, a biodegradable material that is gradually absorbed into the infant’s body tissue over time. Glenn Green, M.D., and Scott Hollister, Ph.D.,, of the University of Michigan used Materialise’s Mimics Innovation Suite to model and construct these splints using computed tomography (CT) scans of patient anatomy.

“This agreement is a critical step in our goal to make this treatment readily available for other children who suffer from this debilitating condition,” said Green.

“We have continued to evolve and automate the design process for the splints, allowing us to achieve in two days what used to take us up to five days to accomplish,” added Hollister, Ph.D., professor of biomedical engineering and mechanical engineering. “I feel incredibly privileged to be building products that surgeons can use to save lives.”

The U-M team hopes to next year open a clinical trial for 30 patients with similar conditions at C.S. Mott Children’s Hospital.

For more information: www.materialise.com

Related Content

NewYork-Presbyterian Hospital Partners With Philips for Health IT and Clinical Informatics
News | Enterprise Imaging | January 16, 2019
Philips announced that NewYork-Presbyterian Hospital has chosen to implement the company’s IntelliSpace Enterprise...
Videos | Advanced Visualization | January 09, 2019
Vinodh Kumar, M.D., and Komal Shah, M.D., associate professors of radiology at...
3-D Reconstruction of Ichthyosaurus Skull

A 3-D reconstruction of the ichthyosaurus skull from a computed tomography (CT) scan. Image courtesy of Nigel Larkin, taken at Royal Veterinary College, London.

News | Computed Tomography (CT) | January 09, 2019
A nearly meter-long skull of a giant fossil marine ichthyosaur found in a farmer's field more than 60 years ago has...
Materialise and Carestream Deploying Zero-Footprint Surgical Planning Solution
News | Medical 3-D Printing | December 14, 2018
Materialise, in collaboration with Carestream Health, is developing a work-in-progress zero-footprint deployment of...
Canon Aquilion One CT Helps Gates Vascular Institute Adhere to New Stroke Guidelines
News | Computed Tomography (CT) | December 12, 2018
In stroke, time saved on imaging is time gained in the treatment window. The recently updated guidelines from the...
GE Healthcare Partners With Department of Veterans Affairs to Accelerate 3-D Printing
News | Medical 3-D Printing | December 11, 2018
GE Healthcare and VA Puget Sound Health Care System, Washington, recently announced a partnership to accelerate the use...
Fovia Launches F.A.S.T. AI Suite for PACS
Technology | Advanced Visualization | December 05, 2018
Fovia Inc. recently announced the release of a new artificial intelligence (AI) visualization platform, F.A.S.T. AI...
Videos | Advanced Visualization | November 30, 2018
This is an example of the FDA-cleared OpenSight augmented reality (AR) system for surgical planning from NovaRad at t
Vital Showcases Enterprise Imaging Advances at RSNA 2018

Global Illumination from Vital Images

News | Enterprise Imaging | November 28, 2018
Vital, a Canon Group company, will highlight the latest additions to its enterprise imaging portfolio at the 2018...