News | Medical 3-D Printing | January 05, 2016

Materialise Partnering to Manufacture, Trial 3D-Printed Tracheal Splints

Splints will be constructed from bioresorbable technology platform licensed to Tissue Regeneration Systems, trial conducted with University of Michigan

Kaiba Gionfriddo, Materialise, TRS, University of Michigan, partnerships, 3D-printed tracheal splints

Kaibba Gionfriddo, one of the children suffering from TBM who was treated with a 3D-printed tracheal splint at C.S. Mott Children's Hospital at the University of Michigan

January 5, 2016 — In December, Materialise announced a partnership with Tissue Regeneration Systems (TRS) to manufacture 3D-printed tracheal splints for use in clinical trials Materialise will undertake with the University of Michigan in a separate exclusive licensing agreement. The company plans to ultimately offer the newly granted patent in the marketplace.

Materialise’s Mimics Innovation Suite was used to design the splint, which is constructed from a bioresorbable technology platform licensed to TRS by the University of Michigan in 2007. After several years refining fabrication methods, TRS received its first commercial product clearance from the U.S. Food and Drug Administration (FDA) in 2013.

Thanks to FDA approval for Expanded Access to an investigational medical device, the splints have already saved the lives of four infants suffering from tracheobronchomalacia (TBM), a life-threatening congenital airway disorder, since 2013.

About 1 in 2,200 babies are born with TBM, which causes the trachea to periodically collapse. The tracheal splint, developed to save the lives of these children, is made with a biopolymer called polycaprolactone, a biodegradable material that is gradually absorbed into the infant’s body tissue over time. Glenn Green, M.D., and Scott Hollister, Ph.D.,, of the University of Michigan used Materialise’s Mimics Innovation Suite to model and construct these splints using computed tomography (CT) scans of patient anatomy.

“This agreement is a critical step in our goal to make this treatment readily available for other children who suffer from this debilitating condition,” said Green.

“We have continued to evolve and automate the design process for the splints, allowing us to achieve in two days what used to take us up to five days to accomplish,” added Hollister, Ph.D., professor of biomedical engineering and mechanical engineering. “I feel incredibly privileged to be building products that surgeons can use to save lives.”

The U-M team hopes to next year open a clinical trial for 30 patients with similar conditions at C.S. Mott Children’s Hospital.

For more information: www.materialise.com

Related Content

Smoldering Spots in the Brain May Signal Severe MS

NIH researchers found that dark rimmed spots representing ongoing, “smoldering” inflammation, may be a hallmark of more disabling forms of multiple sclerosis. Image courtesy of Reich lab, NIH/NINDS.

News | Neuro Imaging | August 22, 2019
Aided by a high-powered brain scanner and a 3-D printer, National Institutes of Health (NIH) researchers peered inside...
RSNA and ACR to Collaborate on Landmark Medical 3D Printing Registry
News | Medical 3-D Printing | August 08, 2019
The Radiological Society of North America (RSNA) and the American College of Radiology (ACR) will launch a new medical...
Synaptive Medical Launches Modus Plan With Automated Tractography Segmentation
Technology | Neuro Imaging | August 07, 2019
Synaptive Medical announced the U.S. launch and availability of Modus Plan featuring BrightMatter AutoSeg. This release...
TeraRecon Unveils iNtuition AI Data Extractor
News | Advanced Visualization | July 03, 2019
Artificial Intelligence (AI) and advanced visualization company TeraRecon announced its new iNtuition AI Data Extractor...
A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model.

A 3-D printed model (left) and a model constructed in augmented reality (right), both of a kidney with a tumor. In both models, the kidney is clear; the tumor is visible in purple on the AR model and in white on the 3-D printed model. Photo courtesy of Nicole Wake, Ph.D.

Feature | Advanced Visualization | July 02, 2019 | By Jeff Zagoudis
Three-dimensional (3-D) printing and...

Image courtesy of Philips Healthcare

Feature | Molecular Imaging | July 01, 2019 | By Sharvari Rale
Diagnostic procedures have always been a cornerstone of early prognosis and patient triaging.
TeraRecon Receives FDA Clearance for Northstar AI Results Explorer
Technology | Artificial Intelligence | June 20, 2019
Advanced visualization and artificial intelligence (AI) technology provider TeraRecon has successfully completed a U.S...
Materialise Receives FDA Clearance for Cardiovascular Planning Software Suite
Technology | Advanced Visualization | June 13, 2019
Three-dimensional (3-D) printing software and solutions company Materialise has received U.S. Food and Drug...
Medivis SurgicalAR Gets FDA Clearance
Technology | Virtual and Augmented Reality | June 10, 2019
Medivis announced that its augmented reality (AR) technology platform for surgical applications, SurgicalAR, has...
Ann Arbor Startup Launches Augmented Reality MRI Simulator
Technology | Virtual and Augmented Reality | June 04, 2019
SpellBound, an Ann Arbor startup specializing in augmented reality (AR) tools for children in hospitals, has officially...