News | Oncology Diagnostics | March 12, 2019

Lucence Diagnostics to Develop AI Tools for Liver Cancer Treatment

Software tools would combine imaging and molecular data from liver cancer patients to help physicians make better treatment decisions

Lucence Diagnostics to Develop AI Tools for Liver Cancer Treatment

Pseudocolor accentuated CT scan image of a liver tumor. Image courtesy of Lucence Diagnostics.

March 12, 2019 — Genomic medicine company Lucence Diagnostics announced a new project to develop artificial intelligence (AI) algorithms for improving diagnosis and treatment of liver cancer. The goal is to combine the imaging and molecular data from liver cancer patients into smarter software tools that help physicians make better treatment decisions.

Lucence will be working with Olivier Gevaert, Ph.D., assistant professor of medicine (biomedical informatics) and of biomedical data science at the Stanford University School of Medicine. Having developed LiquidHallmark, which it calls the world's first liquid biopsy next-generation sequencing test that analyzes the DNA of cancer-causing mutations and viruses, Lucence will contribute its genomics expertise and proprietary sequencing technology to this project.

Liver cancer is the second leading cause of avoidable cancer deaths globally1, and hepatitis viruses contribute to the bulk of this disease. The incidence rate of liver cancer is also rising faster than any other cancer in both men and women in the United States2. The best chance of cure is surgery, and good characterization of the extent and type of the disease is critical for surgical planning. Imaging tests such as ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) play a crucial role in the visualization of liver tumors. Fusing imaging data with sequencing data that includes both cancer mutations and viral DNA will create a unique opportunity for AI-based approaches to advance liver cancer care.

This project will evaluate a dataset of more than 5,000 patients to identify image changes and patterns that are linked to diagnostic and treatment outcomes in liver cancer.

For more information: www.lucencedx.com

References

1. Knaul F.M., Arreola-Ornelas H., Rodriguez N.M., et al. Avoidable Mortality: The Core of the Global Cancer Divide. Journal of Global Oncology, Aug. 10, 2018. DOI: 10.1200/JGO.17.00190.

2. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, Jan. 8, 2019. DOI: 10.3322/caac.21551.

Related Content

Sponsored Content | Videos | Artificial Intelligence | February 21, 2020
In Artificial Intelligence at RSNA 2019, ITN Contributing Editor Greg Freiherr offers an overview of artificial intel
An example of the MRI scans showing long-term and short-term survival indications. #MRI

An example of the MRI scans showing long-term and short-term survival indications. Image courtesy of Case Western Reserve University

News | Magnetic Resonance Imaging (MRI) | February 21, 2020
February 21, 2020 — ...
Sponsored Content | Videos | Enterprise Imaging | February 19, 2020
Bill Lacy, vice president, Medical Informatics at FUJIFILM Medic...
The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

News | Artificial Intelligence | February 13, 2020
February 13, 2020 — The U.S.
Varian announced it has received FDA 510(k) clearance for its Ethos therapy, an Adaptive Intelligence solution. Ethos therapy is an artificial intelligence (AI)-driven holistic solution that provides an opportunity to transform cancer care.
News | Image Guided Radiation Therapy (IGRT) | February 11, 2020
February 11, 2020 — Varian announced it has received FDA 510(k) c
Mammograms of a 49-year-old woman with invasive lobular carcinoma on the right-side breast

Mammograms of a 49-year-old woman with invasive lobular carcinoma on the right-side breast. A small mass with micro-calcifications on the right-side breast was detected correctly by AI with an abnormality score of 96%. This case was recalled by 7 out of 14 radiologists (4 breast radiologists and 3 general radiologists) initially (without AI) and all 14 radiologists recalled this case correctly with the assistance of AI.

News | Artificial Intelligence | February 11, 2020
February 11, 2020 — A new study, published in...
PaxeraHealth enterprise imaging, PACS, VNA solutions
News | Enterprise Imaging | February 11, 2020
February 11, 2020 — Enterprise Imaging developer PaxeraHealth
An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019.

An example of artificial intelligence (AI) being developed by Hitachi to automatically review and identify nodules on lung CT scans. This is part of a suite of AI apps Hitachi is developing. This example was being shown as a work in progress at RSNA 2019. Photo by Dave Fornell.

Feature | Artificial Intelligence | February 07, 2020 | Sanjay Parekh, Ph.D. 
February 7, 2020 – At the 2019 Radiological Society...
Sponsored Content | Videos | Artificial Intelligence | February 07, 2020
At RSNA19, GE Healthcare introduced its...
Sponsored Content | Videos | Artificial Intelligence | February 06, 2020
ProFound AI is an FDA-cleared artificial intelligence (AI) system for reading 3-D breast tomosynthesis images.