News | Radiology Imaging | January 12, 2022

Beckman Institute researchers have mathematically defined a type of error that can arise during routine medical imaging, called hallucinations

From left-to-right are examples of a true object, a reconstructed estimate of the object produced by use of a U-Net from tomographic measurements, the total error map, the error in the null component of the reconstructed object, and the error in the measurement component of the reconstructed object. The two rows correspond to different objects. In each case, the true object is outside the respective training data distribution of the U-Net and phase noise was added to the measurements prior to image reconstr

From left-to-right are examples of a true object, a reconstructed estimate of the object produced by use of a U-Net from tomographic measurements, the total error map, the error in the null component of the reconstructed object, and the error in the measurement component of the reconstructed object. The two rows correspond to different objects. In each case, the true object is outside the respective training data distribution of the U-Net and phase noise was added to the measurements prior to image reconstruction. Image courtesy of IEEE Xplore


January 12, 2022 — Machine-learning methods are being actively developed for computed imaging systems like magnetic resonance imaging (MRI). However, these methods occasionally introduce false, unexplainable structures in images, known as hallucinations, that can lead to incorrect diagnoses.

Researchers at the Beckman Institute for Advanced Science and Technology and the Computational Imaging Science Laboratory have defined a mathematical framework for identifying hallucinations, a first step toward reducing their frequency.

This work, “On hallucinations in tomographic image reconstruction,” is published in IEEE Transactions on Medical Imaging in a special issue on machine learning methods for image reconstruction.

Most modern medical imaging devices — such as MRI, computed tomography (CT) and PET — do not record images directly. Instead, they employ a computational procedure known as image reconstruction. Researchers worldwide are seeking to develop improved image reconstruction methods that use deep learning to circumvent the limitations of traditional methods. Deep learning, like all machine-learning methods, allows algorithms to self-improve by learning from characterized datasets. Advanced DL-based methods can reduce imaging scan times and radiation doses. Although DL-based image reconstruction methods hold great potential for such purposes, they sometimes produce images that appear plausible, but contain false structures that may confound a medical diagnosis.

“This work is an excellent example of how our research group is making foundational contributions to the rapidly evolving field of imaging science,” said Mark Anastasio, the principal investigator of this study and head of the Department of Bioengineering at the University of Illinois Urbana-Champaign. 

“Because our framework for analyzing hallucinations in biomedical images will enable researchers to quantitatively assess their image reconstruction methods in new and meaningful ways, we expect the impact of our study to be large."

Lead authors Varun Kelkar and Sayantan Bhadra, both graduate students in Anastasio’s group, anticipate that hallucination maps will help researchers and radiologists identify hallucinations and assess how detrimental they might be. Ultimately, this leads to a deeper understanding of how DL reconstruction methods should be trained to prevent patient misdiagnosis.

“An effective reconstruction method is based on understanding the physics of the imaging system, but also uses realistic assumptions about how an object should appear,” Bhadra said. “DL-based image reconstruction methods are about designing the interplay of these elements by … training deep neural networks on large databases of previously existing clinical images.”

Though DL-based image reconstruction methods are gaining popularity in the field, evidence suggests that they may be unstable, meaning small changes to collected measurements could cause large differences in the resulting image. These challenges are exacerbated when image sampling is incomplete (in other words, when fewer raw imaging measurements are collected to reduce time and costs).

“Although DL has been shown to be useful in many contexts, there’s a lot going on inside these methods that are … still viewed as a black box by many researchers,” Bhadra said. “That makes it hard to tell when a medical abnormality might actually be a false structure created by the machine-learning method. The novelty of our work is in mathematically defining those false structures, which we call hallucinations.”

Kelkar, Bhadra, and colleagues provide a formal definition of hallucinations based on fundamental principles of imaging science. Through numerical studies, they evaluated the presence and impact of hallucinations across both DL-based and non-data-driven reconstruction methods. These methods were used to reconstruct images of adult and pediatric brain tissue — with the DL-based method trained only on adult brain images — and evaluate the effect of bias from the training images.

“Our goal in mathematically defining hallucinations was to separate sources of systemic error, like measurement errors or noise, from errors that arise due to inaccurate assumptions about the to-be-imaged subject that are built into the image reconstruction method,” Kelkar said.

The impact of a generated hallucination is highly dependent on the type of tissue being imaged and the disease being monitored. Sophisticated image processing methods can be applied to identify how a particular diagnostic task may be affected by the presence of hallucinations.

“A hallucination could be something minor, such as a slight imperfection at the boundary of a tissue, or it could be something major, like introducing an entire fold of tissue in the brain,” Kelkar said.

For more information: www.beckman.illinois.edu/


Related Content

Feature | Cardiac Imaging | Kyle Hardner

Advances in coronary CT angiography (CCTA) have reached the point where image quality and AI capabilities are creating ...

Time February 06, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Feb. 6, 2026 — A state-of-the-art intraoperative MRI (iMRI) has arrived at the University of Chicago Medicine, one of ...

Time February 06, 2026
arrow
News | Computed Tomography (CT)

Feb. 4, 2026 — A new review published in the American Journal of Roentgenology (AJR) finds that advances in CT ...

Time February 04, 2026
arrow
News | Radiology Imaging

Feb. 4, 2026 — The Royal College of Radiologists (RCR) has issued its initial reaction to the British government's ...

Time February 04, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 27, 2026 — Hyperfine has announced results from the largest data set to date evaluating stroke detection with its ...

Time January 28, 2026
arrow
News | Radiology Education

Jan. 22, 2026—The American Roentgen Ray Society (ARRS) will host a live virtual symposium, "Medical Imaging for ...

Time January 28, 2026
arrow
News | Radiology Imaging

Jan.26, 2026 — SimonMed Imaging has unveiled an updated brand and the launch of SimonMed Longevity, a new division ...

Time January 27, 2026
arrow
News | PET Imaging

Jan. 26, 2026 — Nuclidium, a clinical-stage radiopharmaceutical company developing a proprietary copper-based ...

Time January 27, 2026
arrow
News | Computed Tomography (CT)

Jan. 21, 2026 — Aidoc recently announced that the U.S. Food and Drug Administration (FDA) cleared the industry's first ...

Time January 23, 2026
arrow
News | Point-of-Care Ultrasound (POCUS)

Jan. 22, 2026 — Qure.ai has received a grant from the Gates Foundation to develop a large open-source multi-modal ...

Time January 23, 2026
arrow
Subscribe Now