News | Oncology Diagnostics | September 20, 2019

Integrated Imaging Technology Aims To Provide Real-Time Look at Cancer Treatment

New technology will give researchers a deeper look at cancer and effectiveness of treatments

Numerical simulation with a heterogeneous mouse

Numerical simulation with a heterogeneous mouse. (a) The geometry of the mouse with major organs near the source, and (b) the surface fluence computed with TIM-OS. Image courtesy of Rensselaer Polytechnic Institute.

September 20, 2019 — If researchers could observe drug delivery and its effect on cancer cells in real time, they would be able to tailor treatment options with unprecedented specificity.

An academic-industrial partnership between engineers at Rensselaer Polytechnic Institute, molecular and cellular biologists at Albany Medical College, and engineers at MARS Bioimaging Ltd aims to make this a reality for the treatment of breast cancer through the combination of highly innovative X-ray and optical imaging technologies.

“We are combining cutting-edge technologies that we had to develop ourselves. There is no synergy like this in the world at this point,” said Xavier Intes, a professor of biomedical engineering at Rensselaer. “We are uniquely positioned to develop the next imaging systems to support precision medicine.” 

This multidisciplinary project is being supported for five years by a nearly $2.9 million grant from the National Institutes of Health (NIH). In a highly competitive field, NIH rated it among the top 1 percent of research proposals submitted for funding. 

Intes and Ge Wang, co-director and director of the Biomedical Imaging Center, are leading this research for Rensselaer with Margarida Barroso, a professor in the Department of Molecular and Cellular Physiology at Albany Medical College. The team will also be joined by Anthony Butler, a radiologist with MARS Bioimaging Ltd. in New Zealand and a specialist in the X-ray spectral photon-counting imaging technology that will be used in this research. 

“This work on breast cancer will pave the way toward a better diagnosis and management for a broad, wide range of cancers,” Butler said. 

The Rensselaer engineers will combine X-ray photon-counting and optical time-resolving imaging technologies that their teams have developed, enabling scientists to watch cancer in living systems as it reacts to treatment. Barroso and her team will develop and characterize how different types of breast tumors are able to take in clinical drugs, used in this research, as imaging probes to visualize their location in tumors. 

Wang and his team, in collaboration with MARS Bioimaging, have developed a photon-counting X-ray method for diffuse optical tomography that uses information gathered from the energy of each and every individual photon to generate an image — in color — that differentiates between different materials like soft tissue, bone, water, contrast agents and pharmaceuticals. This complements the functional and molecular properties that optical imaging reveals about each organ and tissue. 

Intes and his research group, in collaboration with Albany Medical College, have developed novel optical imaging methods that allow researchers to observe — down to the cellular and molecular level — delivery of drugs to the cell, and any interaction that might happen. 

Combining the two technologies will help researchers single out the cancer cells and monitor their responses to therapeutic agents. 

“X-ray and optical are highly synergistic modalities working together. This is a perfect marriage,” Wang said. 

Both teams are also developing the next generation of imaging algorithms using deep learning methodologies to produce clearer images than were previously possible. 

In this specific project, the team will focus on a type of breast cancer that expresses human epidermal growth factor receptor 2, or HER2. Targeted therapies for this kind of cancer have demonstrated great promise in clinical settings, the researchers said, but drug resistance over time remains a problem. 

“Numerous drugs have been developed recently to target breast cancer, but their ability to reach all cancer cells in a tumor is still lacking,” Barroso said. “This imaging drug-delivery study will allow us to understand what prevents drugs from reaching different areas of the tumor and, thus, how to act to improve drug delivery to combat breast cancer.” 

This new integrated imaging approach will allow the biologist team at Albany Medical College to explore why that resistance is happening by enabling scientists to understand specific cancer mechanisms more deeply, assess in real time if a drug is accurately and thoroughly being delivered to the tumor cells, and if the drug is effective and persistent.

“Cancer is not static. Cancer is dynamic,” Intes said. “When you start to introduce drugs, it can change rapidly and even completely, so noninvasive imaging is important.”

For more information: www.rpi.edu

Related Content

Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
Phone call and linkage-to-care-based intervention increases mammography uptake among primary care patients at an urban safety-net hospital

Getty Images

News | Mammography | May 22, 2020
May 22, 2020 — Telephone outreach coupled with scheduling assistance significantly increased...
The Breast Imaging and Reporting System (BI-RADS) was established by the American College of Radiology to help classify findings on mammography. Findings are classified based on the risk of breast cancer, with a BI-RADS 2 lesion being benign, or not cancerous, and BI-RADS 6 representing a lesion that is biopsy-proven to be malignant.

Getty Images

News | Breast Imaging | May 19, 2020
May 19, 2020 — Women with mammographically detected breast lesions that are probably benign should have follow-up sur
Podcast: Impact of COVID-19 on Breast Cancer Treatment with Dr. Andrea Madrigrano

Kubtec hosts a Podcast: Impact of COVID-19 on Breast Cancer Treatment with Andrea Madrigrano, M.D., as part of its public service campaign.

News | Coronavirus (COVID-19) | May 06, 2020
May 6, 2020 — The COVID-19 pandemic is an unprec
The American Society of Breast Surgeons (ASBrS), the National Accreditation Program for Breast Centers (NAPBC), the National Comprehensive Cancer Network (NCCN), the Commission on Cancer (CoC) of the American College of Surgeons, and the American College of Radiology (ACR) have released new joint recommendations for prioritization, treatment and triage of breast cancer patients during the coronavirus (COVID-19) pandemic

Getty Images

News | Breast Imaging | April 13, 2020
April 13, 2020 — The American Society of Breast Surgeons (...
Table 1. Compared to 2-D mammography, which yields four images per patient, digital breast tomosynthesis (DBT), or 3-D mammography, produces hundreds of images per patient. While this provides more information for clinicians, the exponential increase in data can result in reader fatigue and burnout, which may ultimately affect patient care.

Table 1. Compared to 2-D mammography, which yields four images per patient, digital breast tomosynthesis (DBT), or 3-D mammography, produces hundreds of images per patient. While this provides more information for clinicians, the exponential increase in data can result in reader fatigue and burnout, which may ultimately affect patient care.

Sponsored Content | Case Study | Artificial Intelligence | April 09, 2020
As the largest independent imaging group in Michigan with 10 locations across the state,...