News | Neuro Imaging | May 10, 2018

Impaired Brain Pathways May Cause Attention Problems After Stroke

Patients with chronic stroke showed prolonged reaction time during imaging assessment

Impaired Brain Pathways May Cause Attention Problems After Stroke

May 10, 2018 — Damage to some of the pathways that carry information throughout the brain may be responsible for attention deficit in patients who have had a subcortical stroke in the brain's right hemisphere. These conclusions are drawn from a study published online in the journal Radiology. Researchers hope the findings may provide a measure for selecting suitable patients for early interventions aimed at reducing cognitive decline following stroke.

A stroke may affect cortical regions of the cerebral cortex, which includes the gray matter that lines the surface of the brain, or it may affect brain regions below the cortex, including white matter tracts connecting different regions of the brain. A stroke affecting brain structures below the cortex is known as a subcortical stroke.

More than one-third of patients experience cognitive decline after a stroke, including attention deficit, which can affect and impair the patient's ability to carry out routine activities of daily living.

"Impairment of attention has been observed in patients with both cortical and subcortical stroke," said senior study author Chunshui Yu, M.D., from the Department of Radiology at Tianjin Medical University General Hospital in Tianjin, China. "In cortical stroke, the direct involvement of cortical regions associated with attention may account for the deficit. However, the parts of the nervous and brain systems underlying attention deficit in subcortical stroke remain largely unknown."

To investigate the mechanisms underlying attention deficit in chronic subcortical stroke, Yu and colleagues combined voxel-based lesion-symptom mapping (VLSM) and diffusion tensor tractography (DTT) in two sets of patients: One group of 49 patients (32 men and 17 women between the ages of 40 and 71) after subcortical stroke, and 52 control patients (30 men and 22 women, age 40-68). VLSM is a method of analyzing relationships between tissue damage and behavioral deficits, and DTT is a magnetic resonance imaging (MRI) technique that allows for 3-D visualization of specific white matter tracts in the brain.

A modified version of the attention network test was used to assess visual attention function. VLSM was used to identify lesion locations related to attention deficit in the stroke patients. Then DTT was used to determine the responsible impaired brain connections at the chronic stage (> 6 months post-stroke).

The results showed that compared to the controls, patients with chronic stroke exhibited prolonged reaction time during the attention task. VLSM revealed that having an acute stroke lesion in the right caudate nucleus and nearby white matter was correlated to the prolonged reaction time. DTT showed that the responsible lesion was located in the right thalamic- and caudate-prefrontal pathways in controls.

The right brain damage subgroup had significantly decreased fractional anisotropy (FA) in these pathways, which were correlated with the prolonged reaction time. FA provides a way to measure diffusion occurring within a region of the brain. FA is typically higher in brain regions of high organization. Reductions in FA have been previously associated with advancing age and in cases of cognitive impairment.

"The impairment of the right thalamic- and caudate-prefrontal pathways was consistently associated with attention deficit in patients with right subcortical stroke," Yu said. "Based on this association, one can estimate which patients with stroke would be more likely to develop into long-term persisting attention deficit by evaluating the lesion-induced damage to these pathways."

For more information: www.pubs.rsna.org

 

Related Content

FDA Clears Advancements for Viewray MRIdian Radiation Therapy System
Technology | Image Guided Radiation Therapy (IGRT) | February 21, 2019
February 21, 2019 — ViewRay Inc. received 510(k) clearance from the U.S.
MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Videos | Radiation Therapy | February 15, 2019
ITN Associate Editor Jeff Zagoudis speaks with Vinai Gondi, M.D., director of research and CNS neuro-oncology at the
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
February 13, 2019 — At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and e
Videos | Angiography | February 08, 2019
This is an example of an arterial venous malformation (AVM) in the brain imaged on a...
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
Medtronic Recalls Synergy Cranial Software and Stealth Station S7 Cranial Software
News | Procedure Navigation Systems | February 05, 2019
Medtronic is recalling the Synergy Cranial Software and StealthStation S7 Cranial Software used with the StealthStation...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...
Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers
News | Stereotactic Body Radiation Therapy (SBRT) | January 31, 2019
The first report from a phase II, multi-center clinical trial indicates stereotactic radiation can extend long-term...