News | Prostate Cancer | October 03, 2017

Immune Response Prognostic for Prostate Cancer Survival, Recurrence and Radiotherapy Response

Findings indicate new avenue for personalized medicine and potentially inform use of immunotherapy treatments currently on the market for localized prostate cancer

Immune Response Prognostic for Prostate Cancer Survival, Recurrence and Radiotherapy Response

October 3, 2017 — A new study finds that immune response in prostate cancer may be able to forecast how patients will respond to radiation therapy, as well as their likelihood of disease recurrence and survival outcomes. The analysis of more than 9,000 prostate tumors also found evidence that PD-L2, not PD-L1, may provide a key route for targeted therapies, such as immunotherapy, to slow disease progression. Findings were presented at the 59th Annual Meeting of the American Society for Radiation Oncology (ASTRO), Sept. 24-27 in San Diego.

“When the immune system responds to tumors, it sends specific types of immune cells directly to the tumor. Understanding this infiltration of immune cells allows researchers and oncologists to devise treatment strategies based on each patient’s specific immune response and disease biology. Checkpoint inhibitors and other immunotherapies have been utilized to manage other solid tumors. Our work suggests that there may be a role for these innovative treatments in prostate cancer, as well,” said Shuang (George) Zhao, M.D., lead author of the clinical study and a radiation oncology resident at the University of Michigan in Ann Arbor.

To better define the immune landscape of localized prostate cancer, researchers examined 9,393 tumor samples from men who underwent a radical prostatectomy, including 7,826 recently collected prospective tumor samples and 1,567 retrospectively obtained samples. Immune content in the tumor samples was identified using high-throughput computational analysis with specific immune-related genes. Gene expression profiling was conducted on a commercial clinical-grade platform, and gene selection was guided by the published literature.

Clustering analysis of the 9,393 tissue samples identified a subset of patients with higher expression of immune-related pathways. This immune content score, which was predicted computationally, appeared to predict prostate cancer recurrence, metastasis and survival. Higher levels of the immune content score were associated with lower likelihood of survival, including freedom from disease progression (Hazard Ratio (HR) = 1.3, p = 0.0002), freedom from distant metastases (HR = 1.3, p = 0.0006), prostate cancer-specific survival (HR = 1.5, p = 0.0003) and overall survival (HR = 1.3, p = 0.006). Clinical outcomes were available for retrospective data only.

The immune content score also predicted response to radiation therapy following radical prostatectomy. On multivariate analysis, it interacted significantly (p = 0.017) with response to post-operative radiation therapy (PORT).

“Our analyses also found a potential interaction between immune content and radiation response, suggesting that combinations of radiation therapy and immunotherapies may be a treatment option worthy of further investigation,” said Zhao.

Different types of immune cells were influential in different ways, indicating a complex interaction between immune cells and tumor cells. Specifically, higher levels of active macrophages and T-cells were prognostic for worse distant metastasis-free survival (p < 0.05), while active mast cells, NK cells and dendritic cells were associated with improved distant metastasis-free survival (p < 0.05). Individual cell types were examined from the genome-wide expression data using the CIBERSORT algorithm.

PD-L1, the target of several U.S. Food and Drug Administration (FDA)-approved checkpoint inhibitors, was not associated with outcomes in this study, but PD-L2, which interacts with PD-1 similarly to PD-L1, was associated with worse treatment outcomes. Specifically, higher levels of PD-L2 were associated with greater likelihood for disease recurrence (HR = 1.17, p = 0.013), distant metastasis (HR = 1.25, p = 0.014) and prostate cancer death (HR = 1.45, p = 0.003).

“As immune checkpoint blockers have come to market, PD-L1 has received a great deal of attention — but it does not appear to be widely expressed in prostate cancer. PD-L2, however, was much more highly expressed in these tumor samples, and it also was associated with worse outcomes. The understudied PD-L2 ligand may be the better therapeutic target for patients with localized prostate cancer,” said Zhao.

“The immune landscape of prostate cancer is highly complex. We need to develop treatment approaches that account for individual tumor and patient characteristics in order to prescribe the best treatments for each individual prostate cancer patient,” he concluded.

For more information: www.astro.org

Related Content

Clinical Trials and Cutting-Edge Radiation Oncology Research to Be Featured at ASTRO 2017

Related Content

Micro-Ultrasound and Artificial Intelligence Combining to Detect Prostate Cancer
News | Prostate Cancer | February 12, 2019
Cambridge Consultants has partnered with Exact Imaging, makers of the ExactVu micro-ultrasound platform, as the two...
Canon Adds Radiation Therapy Package to Aquilion Prime, Lightning CT Systems
News | Computed Tomography (CT) | February 11, 2019
In the patient-centric world of radiation oncology, it is critical that computed tomography (CT) simulation is...
Elekta Unity MR-Linac Earns FDA Clearance
Technology | Image Guided Radiation Therapy (IGRT) | February 07, 2019
The Elekta Unity magnetic resonance radiation therapy (MR/RT) system recently received 510(k) premarket notification...
University of Oklahoma Cancer Center Begins First Proton Therapy Treatments
News | Proton Therapy | February 01, 2019
Home to the largest and most comprehensive radiation therapy program in Oklahoma, the Stephenson Cancer Center at OU (...
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...
Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers
News | Stereotactic Body Radiation Therapy (SBRT) | January 31, 2019
The first report from a phase II, multi-center clinical trial indicates stereotactic radiation can extend long-term...
Philips Collaborates With MIM Software on Radiation Therapy Treatment Planning
News | Treatment Planning | January 31, 2019
January 31, 2019 — Philips announced a collaboration with imaging solutions provider MIM Software Inc.
ImaginAb Enrolls First Patient in Phase II PET Agent Clinical Trial
News | Radiopharmaceuticals and Tracers | January 30, 2019
ImaginAb Inc. announced the enrollment of the first patient in the Phase II clinical trial of the company’s CD8+ T Cell...
Laurent Levy, CEO of Nanobiotix, explains the use of his company’s nanoparticles to enhance the radiation sensitivity of tumor tissue to improve patient outcomes

Laurent Levy, CEO of Nanobiotix, explains the use of his company’s nanoparticles to enhance the radiation sensitivity of tumor tissue to improve patient outcomes. The metallic-based nanoparticles show up on CT scans so it can be used as a permanent fiduciary marker to track tumor response. The images show the initial tumor and enhancement areas due to the nanoparticles and the resulting outcomes following treatment. Photo by Dave Fornell

Feature | Radiation Oncology | January 30, 2019 | By Dave Fornell
Artificial intelligence (AI) has been the hot topic discussed at all trade shows, and the...