Technology | Enterprise Imaging | July 05, 2019

Hyland Healthcare Adds ImageNext Imaging Workflow Optimizer to Enterprise Imaging Suite

ImageNext intelligently routes, sorts and distributes imaging studies to increase productivity by up to 20 percent

Hyland Healthcare Adds ImageNext Imaging Workflow Optimizer to Enterprise Imaging Suite

July 5, 2019 — Hyland Healthcare is launching ImageNext, a vendor-neutral imaging workflow optimizer that combines intelligent imaging workflow orchestration with an integrated, universal patient worklist. The solution connects to virtually any universal viewer, picture archiving and communication system (PACS) or vendor neutral archive (VNA); this allows users to intelligently route, sort and distribute imaging studies based on customer preferences such as physician location, schedule and subspecialty.

ImageNext enhances radiology workflow productivity by customizing clinician's preferences, distributing cases in real time and balancing workloads. It eliminates the need for radiologists to access and monitor multiple worklists and dictation systems, and centralizes schedule management for staffing managers. This results in productivity gains of up to 20 percent while improving profits and physician satisfaction.

Some of ImageNext's key features include enhanced workflow orchestration, equitable distribution and load balancing, interrupted workflow management and color-coded service-level agreement tracking.

In addition to being vendor-neutral, ImageNext is also designed for strong integration with Hyland Healthcare's other strategic enterprise imaging solutions, including NilRead Enterprise Viewer and Acuo VNA. This delivers an enterprise-first imaging experiences to users.

For more information: www.hylandhealthcare.com

Related Content

Image courtesy of GE Healthcare

Feature | Mobile C-Arms | July 08, 2020 | By Melinda Taschetta-Millane
Moblie C-arms have seen several advances over the past de
Several drivers will contribute to the growth of the teleradiology market in terms of penetration, revenue and read volumes over the next five years

Getty Images

Feature | Teleradiology | July 08, 2020 | By Arun Gill
Last year was a record year for the global...
A 3-D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a study published in the journal Radiology.

Volume flow as a function of color flow gain (at a single testing site). For each row the color flow c-plane and the computed volume flow are shown as a function of color flow gain. The c-plane is shown for four representative gain levels, whereas the computed volume flow is shown for 12–17 steps across the available gain settings. Flow was computed with (solid circles on the graphs) and without (hollow circles on the graphs) partial volume correction. Partial volume correction accounts for pixels that are only partially inside the lumen. Therefore, high gain (ie, blooming) does not result in overestimation of flow. Systems 1 and 2 converge to true flow after the lumen is filled with color pixel. System 3 is nearly constant regarding gain and underestimates the flow by approximately 17%. Shown are mean flow estimated from 20 volumes, and the error bars show standard deviation. Image courtesy of the journal Radiology

News | Ultrasound Imaging | July 01, 2020
July 1, 2020 — A 3-D ultrasound
R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

R2* maps of healthy control participants and participants with Alzheimer disease. R2* maps are windowed between 10 and 50 sec21. Differences in iron concentration in basal ganglia are too small to allow visual separation between patients with Alzheimer disease and control participants, and iron levels strongly depend on anatomic structure and subject age. Image courtesy of Radiological Society of North America

News | Magnetic Resonance Imaging (MRI) | July 01, 2020
July 1, 2020 — Researchers using magnetic...
Sponsored Content | Videos | PACS | June 29, 2020
Kevin Borden, Vice President of Product, Healthcare IT for Konica Minolta, talks about Improving Access and Aiding Wo
Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosai

Thoracic findings in a 15-year-old girl with Multisystem Inflammatory Syndrome in Children (MIS-C). (a) Chest radiograph on admission shows mild perihilar bronchial wall cuffing. (b) Chest radiograph on the third day of admission demonstrates extensive airspace opacification with a mid and lower zone predominance. (c, d) Contrast-enhanced axial CT chest of the thorax at day 3 shows areas of ground-glass opacification (GGO) and dense airspace consolidation with air bronchograms. (c) This conformed to a mosaic pattern with a bronchocentric distribution to the GGO (white arrow, d) involving both central and peripheral lung parenchyma with pleural effusions (black small arrow, d). image courtesy of Radiological Society of North America

News | Coronavirus (COVID-19) | June 26, 2020
June 26, 2020 — In recent weeks, a multisystem hyperinflammatory condition has emerged in children in association wit
Universal digital operating system for surgery enables health tech companies and start-ups to accelerate, scale and grow

Stefan Vilsmeier, President and CEO of Brainlab Photo courtesy of Brainlab

News | Artificial Intelligence | June 26, 2020
June 26, 2020 — ...